我有一些数据显示对治疗的反应(分类变量)。每个重复项还具有一个基于相对于个体的处理量(连续变量)分配的已知值。我想做的是使用ggplot2
在一个图中显示对治疗效果(条形图)和连续变量(散点图/回归)的响应,其方式类似于{可以使用{1}}或facet_wrap
命令。基本上,我想使用facet_grid
重新创建下面的图。
这是我用来生成样本数据和创建图的代码
ggplot2
是否甚至可以使用 ## GENERATE CONTINUOUS VARIABLES FOR EACH TREATMENT (A - D)
A <- abs(norm(10, 1, 1))
B <- abs(rnorm(10, 3, 1))
C <- abs(rnorm(10, 5, 1))
D <- abs(rnorm(10, 7, 1))
## GENERATE RESPONSE TO TREATMENTS
res_A<-rnorm(10, 28, 3)
res_B<-rnorm(10, 22, 3)
res_C<-rnorm(10, 18, 3)
res_D<-rnorm(10, 12, 3)
## ESTABLISH DATA FRAMES FOR TREATMENTS AND RESPONSE
treatments<-data.frame(A, B, C, D)
response<-data.frame(res_A, res_B, res_C, res_D)
## CONVERT EACH DATA FRAME TO LONG FORM
library(reshape2)
treatments <-treatments %>% gather(Treatment, cont_x, A:D)
response <-response %>% gather(Treatment, Response, res_A:res_D)
## CREATE FINAL DATA FRAME WITH REQUIRED DATA
data<-data.frame(treatments$Treatment, treatments$cont_x, response$Response)
colnames(data) <- c("Treatment", "X", "Response")
## ESTABLISH MEANS AND STANDARD ERROR FOR TREATMENT EFFECTS
means<-tapply(data$Response,list(data$Treatment),mean,na.rm=T)
ER<-tapply(data$Response,list(data$Treatment),sd,na.rm=T)/sqrt(tapply(data$Response,list(data$Treatment),length))
## SET AESTHETICS AND LABEL VALUES
cols<-c("darkcyan","olivedrab3", "palevioletred3","brown3")
labs<-c("A", "B", "C", "D")
## GENERATE PLOT CANVASS
par(mfrow=c(1,2))
par(mar=c(3.5,3,2,1))
## GENEATE BAR PLOT
graph<-tapply(data$Response,data$Treatment,mean,na.rm=T)
plot<-barplot(graph,col=cols,las=1,xaxt='n',yaxt='n',
xlab=NA,ylab =NA,font.lab=2,
cex=0.6,cex.lab=0.6,font.lab=2,font.axis=2,
cex.axis=0.6,ylim=c(0,40), main="TREATMENT EFFECTS")
box()
arrows(x0=plot,y0=means-ER,x1=plot,
y1=means+ER,code=3,angle=90,length=0.02,lwd=1)
axis(side=1,line=0,at=plot,labels=labs,
cex.axis=0.8,mgp=c(0,0.5,0),tck=-0.02,font.axis=1)
axis(side=2,line=0,at=seq(0,40,10),las=1,cex.axis=0.8,
labels=seq(0,40,10),cex=0.6,mgp=c(0,0.6,0))
xlab<-c("Treatment")
ylab<-c("Response")
mtext(xlab, side=1, cex=1.2, line=2)
mtext(ylab, side=2, cex=1.2, line=1.75)
mark<-(means+ER)+2
text(0.7,mark[1],"a",font=1,cex=1.2)
text(1.9,mark[2],"b",font=1,cex=1.2)
text(3.1,mark[3],"c",font=1,cex=1.2)
text(4.3,mark[4],"d",font=1,cex=1.2)
## GENERATE SCATTERPLOT
par(mar=c(3.5, 2, 2, 2))
plot(data$X, data$Response,type='n',ylim = c(0, 40), xlim=c(0,9),pch=21, col='black', cex=1.5, xaxt='n',
yaxt='n', xlab=NA, ylab=NA, main = "CONTINUOUS RESPONSE")
axis(side=1,line=0,tck=NA,at=seq(0,9,3),labels=T,
cex.axis=0.8,mgp=c(0,0.5,0),tck=-0.02,font.axis=1)
axis(side=2,line=0,at=seq(0,40,10),labels=F, tck=0.01)
axis(side=2,line=0,at=seq(0,40,10),labels=F, tck=-0.01)
xlab<-c("Continuous variable")
mtext(xlab, side=1, cex=1.2, line=2)
## PERFORM REGRESSION AND ADD IN REGRESSION LINE
model<-lm (Response ~ X, data = data)
abline(model, lwd=2)
## ADD IN CONFIDENCE INTERVAL
newx <- seq(0,9,length.out=1000)
preds <- predict(model, newdata = data.frame(X=newx),
interval = 'confidence')
lines(newx, preds[ ,3], lty = 'dashed', col = "grey36",lwd=1)
lines(newx, preds[ ,2], lty = 'dashed', col = 'grey36',lwd=1)
polygon(c(rev(newx), newx), c(rev(preds[ ,3]), preds[ ,2]), col = 'grey80', border = NA)
## ADD IN POINTS ONTOP OF CI POLYGON
points(data$X, data$Response, bg= ifelse(data$Treatment == "A", "darkcyan",
ifelse(data$Treatment == "B","olivedrab3", ifelse(data$Treatment == "C", "palevioletred3", "brown3"))),pch=21, col='black', cex=1.5)
## ADD THE REGRESSION EQ
eq<-expression(italic("y = 28.54 - 2.16x"))
rsq<-expression(italic("R"^{2}~"= 0.76 ***"))
text(5 ,35, eq, cex=1.2)
text(4.5, 33, rsq, cex=1.2
来做到这一点?
答案 0 :(得分:2)
确保您可以在ggplot2
和ggpubr
的帮助下使用ggpmisc
。
library(ggplot2)
library(ggpubr)
library(ggpmisc)
a <- data %>%
group_by(Treatment) %>%
summarise(Response=mean(Response)) %>%
mutate(se = sd(Response)/sqrt(length(Response))) %>% ungroup %>%
ggplot(aes(x=Treatment,y=Response,fill = Treatment)) +
geom_col(show.legend = FALSE) +
geom_text(aes(label=tolower(Treatment)), position=position_stack(vjust = 1.3)) +
geom_errorbar(aes(ymin = Response - se, ymax = Response + se), width = 0.1) + scale_fill_manual(values = cols) +
labs(title="TREATMENT EFFECTS")
b <- data %>%
ggplot(aes(x=X,y=Response)) +
geom_smooth(method="lm", show.legend = FALSE) +
geom_point(aes(fill = factor(Treatment)),shape=21,size=3, show.legend = FALSE) +
scale_fill_manual(values = cols) +
labs(title = "CONTINUOUS RESPONSE", xlab="Continuous Variable") +
xlab("Continuous Variable") +
stat_poly_eq(formula = y ~ x, label.x = 0.9, label.y = 0.95, aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")), parse = TRUE)
ggarrange(a,b,nrow = 1)
data <- structure(list(Treatment = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L), .Label = c("A", "B", "C", "D"), class = "factor"), X = c(0.0267649727104236,
1.39488715616046, 0.21355823940511, 0.49907410504292, 0.375279051787701,
0.681959942595334, 2.05952354292797, 2.26083984353423, 1.11354591314711,
0.34506137947979, 2.07866454079728, 3.20194490569932, 3.26342299162599,
2.06754732525705, 4.02484423090347, 3.21831253488128, 3.56925840330762,
3.92631915144912, 2.55130407898901, 4.88369094725247, 4.85805706436391,
6.06714331089959, 5.05696298595936, 4.28599088092722, 2.64907718621996,
5.50017966947343, 5.27853136585637, 5.8694723514342, 4.57774253201089,
4.28459862391154, 6.6919479712577, 6.89039252602714, 7.36883429701188,
5.01895090471179, 7.66623439220746, 7.27620218490248, 6.44135570941742,
7.66409390386461, 8.09858213415943, 4.89114777053612), Response = c(28.647362805403,
30.5878855986189, 36.3739824861786, 33.5874379487616, 23.8060926287858,
30.8520531077353, 26.5940268747477, 28.8356526462252, 30.4727218173035,
26.8151163416507, 17.6391456006427, 19.0921380684935, 21.6950437768534,
23.9017396212974, 27.1407090174467, 15.4322366130883, 26.9809942596379,
22.7341801522041, 23.6518581209459, 21.8377270248132, 13.2905142368901,
19.8951142352182, 17.1400860924093, 16.847732448511, 15.6213812276033,
18.3368951001566, 18.7411799795391, 17.5514579276854, 14.2841781950673,
21.6044042356051, 11.0037691942103, 13.0260853225773, 10.6862778263241,
9.4482751070798, 11.9896873712498, 10.0798146375625, 12.6332310111476,
14.4806588768585, 6.89810707498932, 7.55062781781536)), class = "data.frame", row.names = c(NA,
-40L))
cols <- c("darkcyan", "olivedrab3", "palevioletred3", "brown3")
答案 1 :(得分:0)
是的,可以使用ggplot创建两个图。这是工作区:
library(ggplot2)
library(dplyr)
data %>%
group_by(Treatment) %>%
summarise(Response=mean(Response)) %>%
ggplot(aes(x=Treatment, y=Response)) +
geom_col(aes(fill=cols)) +
geom_errorbar(ymin=means+ER, ymax=means-ER, width = 0.1) +
geom_text(aes(label=tolower(Treatment)), position=position_stack(vjust = 1.1)) +
labs(title="TREATMENT EFFECTS") +
theme_bw() +
theme(legend.position="none")
这是带有方程式并添加了R 2 的散点图。 ggpubr 软件包在这里很有用,可以节省编码。
library(ggpubr)
data %>%
ggplot(aes(x=X, y=Response)) +
geom_point(aes(fill=Treatment), pch=21, col="black", size=4) +
scale_fill_manual(values=c("darkcyan", "olivedrab3", "palevioletred3", "brown3")) +
scale_x_continuous(breaks=seq(0,9,3)) +
scale_y_continuous(lim=c(0, 40), labels=NULL) +
geom_smooth(method="lm") +
stat_regline_equation(label.y=33, label.x=4,
aes(label = ..adj.rr.label..)) +
stat_regline_equation(label.y=35, label.x=4,
aes(label = ..eq.label..)) +
labs(title="CONTINUOUS RESPONSE", x="Continuous variable", y="") +
theme_classic() +
theme(legend.position="none", plot.title = element_text(hjust = 0.5))
答案 2 :(得分:-1)
答案是肯定的,但并不优雅(仅使用ggplot2
)。这是因为the "grammar of graphics" philosophy implemented in ggplot2
背后的整个想法是将各个变量(即整洁的data.frame
中的列)映射到各个情节美学。因此,使用face_*
函数之一只会根据分类值(在face_grid
的情况下为2个分类值)将图分成多个面板。但是,在这种情况下,x和y轴仍将映射到同一变量。在您的示例中,这将需要将x轴映射到左侧包含分类值的变量,以及右侧包含连续值的单独变量。 More on this here。
如果您想使用ggplot2
生成这些图,然后以编程方式将它们组合起来而不必手动进行,我建议您研究ggplot2
扩展名,例如cowplot
,{ {3}}或gridExtra
。我敢肯定这些软件包有一些不错的小插曲,但这是我在过去的egg
中发现的有用的教程。