我该如何解决AttributeError:'Sequential'对象没有属性'_get_distribution_strategy'仅通过导入keras而不是tensorflow?

时间:2020-03-26 14:22:05

标签: tensorflow keras

您好我的环境是Keras 2.3.1 Tensorflow 2.1 Tensorboard 2.1 我正在尝试使用tensorboard回调代码在这里。我不想导入tensorflow,我只想使用keras来解决问题,有什么办法吗? 当我尝试将tensorflow导入为tf并在代码中将tf放在非常keras的前面时,会给出其他类型的错误。

这是错误:

AttributeError                            Traceback (most recent call last)
<ipython-input-8-80d2dd27e60b> in <module>
    121                         validation_data=(x_test, y_test),
    122                         workers=4,
--> 123                         callbacks=[tensorb])
    124 
    125 # Save model and weights

~\.conda\envs\tensorflow 2\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
     89                 warnings.warn('Update your `' + object_name + '` call to the ' +
     90                               'Keras 2 API: ' + signature, stacklevel=2)
---> 91             return func(*args, **kwargs)
     92         wrapper._original_function = func
     93         return wrapper

~\.conda\envs\tensorflow 2\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   1730             use_multiprocessing=use_multiprocessing,
   1731             shuffle=shuffle,
-> 1732             initial_epoch=initial_epoch)
   1733 
   1734     @interfaces.legacy_generator_methods_support

~\.conda\envs\tensorflow 2\lib\site-packages\keras\engine\training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
     98     callback_model = model._get_callback_model()
     99 
--> 100     callbacks.set_model(callback_model)
    101     callbacks.set_params({
    102         'epochs': epochs,

~\.conda\envs\tensorflow 2\lib\site-packages\keras\callbacks\callbacks.py in set_model(self, model)
     66         self.model = model
     67         for callback in self.callbacks:
---> 68             callback.set_model(model)
     69 
     70     def _call_batch_hook(self, mode, hook, batch, logs=None):

~\.conda\envs\tensorflow 2\lib\site-packages\keras\callbacks\tensorboard_v2.py in set_model(self, model)
    114         """Sets Keras model and writes graph if specified."""
    115         model.run_eagerly = False
--> 116         super(TensorBoard, self).set_model(model)

~\AppData\Roaming\Python\Python37\site-packages\tensorflow_core\python\keras\callbacks.py in set_model(self, model)
   1530     # possibly distributed settings.
   1531     self._log_write_dir = distributed_file_utils.write_dirpath(
-> 1532         self.log_dir, self.model._get_distribution_strategy())  # pylint: disable=protected-access
   1533 
   1534     with context.eager_mode():

AttributeError: 'Sequential' object has no attribute '_get_distribution_strategy'

这是我使用的代码:

from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.callbacks import TensorBoard
import os
from os import makedirs
from os.path import exists, join

batch_size = 32
num_classes = 10
epochs = 5
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
log_dir = './logs'

if not exists(log_dir):
    makedirs(log_dir)

# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
                 input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

tensorb = TensorBoard(log_dir=log_dir, histogram_freq=0, batch_size=batch_size, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None, update_freq='epoch')

if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_data=(x_test, y_test),
              shuffle=True,
              callbacks=[tensorb])
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0
        featurewise_std_normalization=False,  # divide inputs by std of the dataset
        samplewise_std_normalization=False,  # divide each input by its std
        zca_whitening=False,  # apply ZCA whitening
        zca_epsilon=1e-06,  # epsilon for ZCA whitening
        rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
        # randomly shift images horizontally (fraction of total width)
        width_shift_range=0.1,
        # randomly shift images vertically (fraction of total height)
        height_shift_range=0.1,
        shear_range=0.,  # set range for random shear
        zoom_range=0.,  # set range for random zoom
        channel_shift_range=0.,  # set range for random channel shifts
        # set mode for filling points outside the input boundaries
        fill_mode='nearest',
        cval=0.,  # value used for fill_mode = "constant"
        horizontal_flip=True,  # randomly flip images
        vertical_flip=False,  # randomly flip images
        # set rescaling factor (applied before any other transformation)
        rescale=None,
        # set function that will be applied on each input
        preprocessing_function=None,
        # image data format, either "channels_first" or "channels_last"
        data_format=None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split=0.0)

    # Compute quantities required for feature-wise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)

    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train,
                                     batch_size=batch_size),
                        epochs=epochs,
                        validation_data=(x_test, y_test),
                        workers=4,
                        callbacks=[tensorb])

# Save model and weights
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)

# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

0 个答案:

没有答案