我想定义损失函数,以便它考虑自动编码器的输入和输出之间的MSE,以及代码与其调用S的真实值之间的MSE。
我的AE定义如下:
input_fts = Input(shape=(self.input_length,), name='ae_input')
encoded = Dense(1826, activation='relu', name='e_dense1')(input_fts)
encoded = Dense(932, activation='relu', name='e_dense2')(encoded)
encoded = Dense(428, activation='relu', name='e_dense3')(encoded)
encoded = Dropout(0.1)(encoded)
code = Dense(self.encoding_length, activation='relu', name='code')(encoded)
decoded = Dense(428, activation='relu', name='d_dense4')(code)
decoded = Dense(932, activation='relu', name='d_dense5')(decoded)
decoded = Dense(1826, activation='relu', name='d_dense6')(decoded)
output_fts = Dense(self.output_length, activation='relu', name='ae_output')(decoded)
ae = Model(inputs=input_fts, outputs=output_fts)
ae.compile(optimizer='adam', loss=ModelFactory.custom_loss(code, self.S, self.lambda_), metrics=['mae', 'acc'])
我的自定义损失为:
@staticmethod
def custom_loss(layer, S, lambda_):
def loss(y_true, y_pred):
return K.mean(K.square(y_pred - y_true), axis=-1) + lambda_ * K.mean(K.square(layer - S[0, :]), axis=-1)
return loss
这有效,但不是我想要的。我希望根据当时正在评估的示例来选择S中的示例,因此S [0,:]将为S [i,:],其中“ i”是示例的索引。
变量“ layer”是形状的张量[None,312]。变量S是NumPy形状为数组的[1194,312],其中1194是我在训练集中拥有的示例数。我的猜测是我也必须将S转换为某种类型的张量。所以我尝试了:
self.S = K.variable(S)
并将custom_loss更改为:
... lambda_ * K.mean(K.square(layer - S), axis=-1)
现在的问题是我的批次和S之间的形状不匹配:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [128] vs. [1194]
AE培训配置为:
self.model.fit(x_train, x_train, epochs=nepochs, batch_size=128, shuffle=True, verbose=1,
validation_split=0.2, callbacks=[classification])
如何使S也随批次大小变化?
答案 0 :(得分:0)
如果我理解正确,S本质上只是模型的另一个输入。在这种情况下,您可以为S添加第二个输入层,并在训练期间将S传递给模型。这将类似于:
input_fts = Input(shape=(self.input_length,), name='ae_input')
S_in = Input(shape=(312,), name='s_input')
encoded = Dense(1826, activation='relu', name='e_dense1')(input_fts)
encoded = Dense(932, activation='relu', name='e_dense2')(encoded)
encoded = Dense(428, activation='relu', name='e_dense3')(encoded)
encoded = Dropout(0.1)(encoded)
code = Dense(self.encoding_length, activation='relu', name='code')(encoded)
decoded = Dense(428, activation='relu', name='d_dense4')(code)
decoded = Dense(932, activation='relu', name='d_dense5')(decoded)
decoded = Dense(1826, activation='relu', name='d_dense6')(decoded)
output_fts = Dense(self.output_length, activation='relu', name='ae_output')(decoded)
ae = Model(inputs=[input_fts, S_in], outputs=output_fts)
ae.add_loss(self.lambda_ * K.mean(K.square(S_in-code)))
ae.add_loss(K.mean(K.square(input_fts - output_fts)))
ae.compile(optimizer='adam')
然后,您使用列表输入正常输入和S来进行预测(请参见https://keras.io/getting-started/functional-api-guide/)。