我已经训练了一个模型来区分恶性和良性皮肤病变,以潜在地检测患者是否患有皮肤癌,并将我的keras模型转换为coreML。现在,我试图使用我完全没有经验(仍然通过反复试验学习)的swift(通过Xcode)将模型应用于ios应用。
当前,我正在尝试通过一个简单的应用程序使模型工作,该应用程序仅从手机的摄像头获取图像以获取预测的标签作为输出,但是我非常想让摄像头实际工作以实现此目的。
import UIKit
import CoreML
import Vision
import Social
@UIApplicationMain
class ViewControl: UIViewController, UIImagePickerControllerDelegate, UINavigationControllerDelegate, UIApplicationDelegate {
@IBOutlet weak var imageView: UIImageView!
var classificationResults : [VNClassificationObservation] = []
let imagePicker = UIImagePickerController()
override func viewDidLoad() {
super.viewDidLoad()
imagePicker.delegate = self
}
func detect(image: CIImage) {
// Load the ML model through its generated class
guard let model = try? VNCoreMLModel(for: weights_skin_cancer().model) else {
fatalError("can't load ML model")
}
let request = VNCoreMLRequest(model: model) { request, error in
guard let results = request.results as? [VNClassificationObservation],
let topResult = results.first
else {
fatalError("unexpected result type from VNCoreMLRequest")
}
if topResult.identifier.contains("malignant") {
DispatchQueue.main.async {
self.navigationItem.title = "mal!"
self.navigationController?.navigationBar.barTintColor = UIColor.green
self.navigationController?.navigationBar.isTranslucent = false
}
}
else {
DispatchQueue.main.async {
self.navigationItem.title = "benign!"
self.navigationController?.navigationBar.barTintColor = UIColor.red
self.navigationController?.navigationBar.isTranslucent = false
}
}
}
let handler = VNImageRequestHandler(ciImage: image)
do { try handler.perform([request]) }
catch { print(error) }
}
func imagePickerController(_ picker: UIImagePickerController, didFinishPickingMediaWithInfo info: [UIImagePickerController.InfoKey : Any]) {
if let image = info[UIImagePickerController.InfoKey.originalImage] as? UIImage {
imageView.image = image
imagePicker.dismiss(animated: true, completion: nil)
guard let ciImage = CIImage(image: image) else {
fatalError("couldn't convert uiimage to CIImage")
}
detect(image: ciImage)
}
}
@IBAction func cameraTapped(_ sender: Any) {
imagePicker.sourceType = .camera
imagePicker.allowsEditing = false
present(imagePicker, animated: true, completion: nil)
}
}
这也是用于将我的模型转换为coreML以供参考的代码:
import coremltools
output_labels = ['benign', 'malignant']
scale = 1/255.
coreml_model = coremltools.converters.keras.convert('/Users/Grampun/Desktop/ISIC-Archive-Downloader-master/trained_models/lr_0.00006-400_DS-20_epochs/weights.best.from_scratch.6.hdf5',
input_names='image',
image_input_names='image',
output_names='output',
class_labels=output_labels,
image_scale=scale)
coreml_model.author = 'Jack Bugeja'
coreml_model.short_description = 'Model used to identify between benign and malignant skin lesions'
coreml_model.input_description['image'] = 'Dermascopic image of skin lesion to evaluate'
coreml_model.input_description['output'] = 'Malignant/Benign'
coreml_model.save(
'/Users/Grampun/Desktop/ISIC-Archive-Downloader-master/trained_models/model_for_ios/lr_0.00006-400_DS-20_epochs/weights_skin_cancer.mlmodel')
一般而言,任何帮助将不胜感激。 谢谢!
答案 0 :(得分:0)
打开相机:
@IBAction func cameraTapped(_ sender: Any) {
let controller = UIImagePickerController()
controller.sourceType = .camera
controller.mediaTypes = ["public.image"]
controller.allowsEditing = false
controller.delegate = self
present(controller, animated: true)
}
将YourModel.mlmodel
添加到您的项目中。
在didFinishPickingMediaWithInfo
中添加以下代码:
if let imageURL = info[.imageURL] as? URL {
if let image = UIImage(contentsOfFile: imageURL.absoluteString) {
self.getPrediction(image)
}
}
添加它以获得预测:
func getPrediction(_ image: UIImage) {
let model = YourModel()
guard let pixelBuffer = buffer(from: image) else { return }
guard let prediction = try? model.prediction(image: pixelBuffer) else { return }
print(prediction.classLabel) // Most likely image category as string value
}
使用此辅助功能从您的UIImage
中提取一个CVPixelBuffer
,您需要在getPrediction()
中使用它
func buffer(from image: UIImage) -> CVPixelBuffer? {
let attrs = [kCVPixelBufferCGImageCompatibilityKey: kCFBooleanTrue, kCVPixelBufferCGBitmapContextCompatibilityKey: kCFBooleanTrue] as CFDictionary
var pixelBuffer : CVPixelBuffer?
let status = CVPixelBufferCreate(kCFAllocatorDefault, Int(image.size.width), Int(image.size.height), kCVPixelFormatType_32ARGB, attrs, &pixelBuffer)
guard (status == kCVReturnSuccess) else {
return nil
}
CVPixelBufferLockBaseAddress(pixelBuffer!, CVPixelBufferLockFlags(rawValue: 0))
let pixelData = CVPixelBufferGetBaseAddress(pixelBuffer!)
let rgbColorSpace = CGColorSpaceCreateDeviceRGB()
let context = CGContext(data: pixelData, width: Int(image.size.width), height: Int(image.size.height), bitsPerComponent: 8, bytesPerRow: CVPixelBufferGetBytesPerRow(pixelBuffer!), space: rgbColorSpace, bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue)
context?.translateBy(x: 0, y: image.size.height)
context?.scaleBy(x: 1.0, y: -1.0)
UIGraphicsPushContext(context!)
image.draw(in: CGRect(x: 0, y: 0, width: image.size.width, height: image.size.height))
UIGraphicsPopContext()
CVPixelBufferUnlockBaseAddress(pixelBuffer!, CVPixelBufferLockFlags(rawValue: 0))
return pixelBuffer
}