我正在尝试将共享嵌入层用于不同的输入长度,但是出现以下错误。
代码:
input1 = [Input(name = "input1", shape = (10,))]
input2 = [Input(name = "input2", shape = (10,))]
input3 = [Input(name = 'input3', shape = (1,))]
input4 = [Input(name = 'input4', shape = (1,))]
input5 = [Input(name = 'input5', shape = (1,))]
inputs= input1 + input2 + input3 + input4 + input5
embed = Embedding(name = 'embed', input_dim = 1000, output_dim = 20)
out1 = Flatten(name = 'output1')(embed(inputs[0]))
out2 = Flatten(name = 'output2')(embed(inputs[1]))
out3 = Flatten(name = 'output3')(embed(inputs[2]))
out4 = Flatten(name = 'output4')(embed(inputs[3]))
out5 = Flatten(name = 'output5')(embed(inputs[4]))
concat = Concatenate(name = 'concat')([out1, out2, out3, out4, out5])
result = Dense(name = 'result' + 'dense', units=1, activation='sigmoid')(concat)
model = Model(inputs = inputs, outputs = result)
#model.summary()
optimizer = Adam(learning_rate=0.01)
model.compile(loss='binary_crossentropy', optimizer=optimizer)
input1 = np.random.randint(0, 100, (100,10))
input2 = np.random.randint(0, 100, (100,10))
input3 = np.random.randint(0, 100, (100,1))
input4 = np.random.randint(0, 100, (100,1))
input5 = np.random.randint(0, 100, (100,1))
dummy_y = (input4 > 0).reshape(-1, 1)
model_input = [input1, input2, input3, input4, input5]
model.fit(x = model_input, y = dummy_y)
错误:
TypeError Traceback (most recent call last)
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\backprop.py in _num_elements(grad)
615 if isinstance(grad, ops.IndexedSlices):
--> 616 return functools.reduce(operator.mul, grad.values._shape_tuple(), 1) # pylint: disable=protected-access
617 raise ValueError("`grad` not a Tensor or IndexedSlices.")
TypeError: unsupported operand type(s) for *: 'int' and 'NoneType'
The above exception was the direct cause of the following exception:
SystemError Traceback (most recent call last)
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\backprop.py in _aggregate_grads(gradients)
597
--> 598 if len(gradients) == 1:
599 return gradients[0]
SystemError: returned a result with an error set
The above exception was the direct cause of the following exception:
SystemError Traceback (most recent call last)
in
27 dummy_y = (input4 > 0).reshape(-1, 1)
28 model_input = [input1, input2, input3, input4, input5]
---> 29 model.fit(x = model_input, y = dummy_y)
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
726 max_queue_size=max_queue_size,
727 workers=workers,
--> 728 use_multiprocessing=use_multiprocessing)
729
730 def evaluate(self,
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
322 mode=ModeKeys.TRAIN,
323 training_context=training_context,
--> 324 total_epochs=epochs)
325 cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
326
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
121 step=step, mode=mode, size=current_batch_size) as batch_logs:
122 try:
--> 123 batch_outs = execution_function(iterator)
124 except (StopIteration, errors.OutOfRangeError):
125 # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in execution_function(input_fn)
84 # `numpy` translates Tensors to values in Eager mode.
85 return nest.map_structure(_non_none_constant_value,
---> 86 distributed_function(input_fn))
87
88 return execution_function
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\def_function.py in __call__(self, *args, **kwds)
455
456 tracing_count = self._get_tracing_count()
--> 457 result = self._call(*args, **kwds)
458 if tracing_count == self._get_tracing_count():
459 self._call_counter.called_without_tracing()
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\def_function.py in _call(self, *args, **kwds)
501 # This is the first call of __call__, so we have to initialize.
502 initializer_map = object_identity.ObjectIdentityDictionary()
--> 503 self._initialize(args, kwds, add_initializers_to=initializer_map)
504 finally:
505 # At this point we know that the initialization is complete (or less
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
406 self._concrete_stateful_fn = (
407 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 408 *args, **kwds))
409
410 def invalid_creator_scope(*unused_args, **unused_kwds):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
1846 if self.input_signature:
1847 args, kwargs = None, None
-> 1848 graph_function, _, _ = self._maybe_define_function(args, kwargs)
1849 return graph_function
1850
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\function.py in _maybe_define_function(self, args, kwargs)
2148 graph_function = self._function_cache.primary.get(cache_key, None)
2149 if graph_function is None:
-> 2150 graph_function = self._create_graph_function(args, kwargs)
2151 self._function_cache.primary[cache_key] = graph_function
2152 return graph_function, args, kwargs
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2039 arg_names=arg_names,
2040 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2041 capture_by_value=self._capture_by_value),
2042 self._function_attributes,
2043 # Tell the ConcreteFunction to clean up its graph once it goes out of
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
913 converted_func)
914
--> 915 func_outputs = python_func(*func_args, **func_kwargs)
916
917 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\def_function.py in wrapped_fn(*args, **kwds)
356 # __wrapped__ allows AutoGraph to swap in a converted function. We give
357 # the function a weak reference to itself to avoid a reference cycle.
--> 358 return weak_wrapped_fn().__wrapped__(*args, **kwds)
359 weak_wrapped_fn = weakref.ref(wrapped_fn)
360
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in distributed_function(input_iterator)
71 strategy = distribution_strategy_context.get_strategy()
72 outputs = strategy.experimental_run_v2(
---> 73 per_replica_function, args=(model, x, y, sample_weights))
74 # Out of PerReplica outputs reduce or pick values to return.
75 all_outputs = dist_utils.unwrap_output_dict(
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in experimental_run_v2(self, fn, args, kwargs)
758 fn = autograph.tf_convert(fn, ag_ctx.control_status_ctx(),
759 convert_by_default=False)
--> 760 return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
761
762 def reduce(self, reduce_op, value, axis):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in call_for_each_replica(self, fn, args, kwargs)
1785 kwargs = {}
1786 with self._container_strategy().scope():
-> 1787 return self._call_for_each_replica(fn, args, kwargs)
1788
1789 def _call_for_each_replica(self, fn, args, kwargs):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\distribute\distribute_lib.py in _call_for_each_replica(self, fn, args, kwargs)
2130 self._container_strategy(),
2131 replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)):
-> 2132 return fn(*args, **kwargs)
2133
2134 def _reduce_to(self, reduce_op, value, destinations):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\autograph\impl\api.py in wrapper(*args, **kwargs)
290 def wrapper(*args, **kwargs):
291 with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
--> 292 return func(*args, **kwargs)
293
294 if inspect.isfunction(func) or inspect.ismethod(func):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in train_on_batch(model, x, y, sample_weight, class_weight, reset_metrics)
262 y,
263 sample_weights=sample_weights,
--> 264 output_loss_metrics=model._output_loss_metrics)
265
266 if reset_metrics:
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in train_on_batch(model, inputs, targets, sample_weights, output_loss_metrics)
309 sample_weights=sample_weights,
310 training=True,
--> 311 output_loss_metrics=output_loss_metrics))
312 if not isinstance(outs, list):
313 outs = [outs]
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py in _process_single_batch(model, inputs, targets, output_loss_metrics, sample_weights, training)
266 model._backwards(tape, scaled_total_loss)
267 else:
--> 268 grads = tape.gradient(scaled_total_loss, trainable_weights)
269 if isinstance(model.optimizer,
270 loss_scale_optimizer.LossScaleOptimizer):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\backprop.py in gradient(self, target, sources, output_gradients, unconnected_gradients)
1012 output_gradients=output_gradients,
1013 sources_raw=flat_sources_raw,
-> 1014 unconnected_gradients=unconnected_gradients)
1015
1016 if not self._persistent:
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\eager\imperative_grad.py in imperative_grad(tape, target, sources, output_gradients, sources_raw, unconnected_gradients)
74 output_gradients,
75 sources_raw,
---> 76 compat.as_str(unconnected_gradients.value))
SystemError: PyEval_EvalFrameEx returned a result with an error set
当我尝试拟合模型时发生错误,但是我尝试使用前四个输入,我可以在没有错误的情况下运行,任何建议都值得赞赏。 我要添加一些回溯错误,谢谢您。