处理Bagging方法时,如何解决TypeError:+不支持的操作数类型:“ int”和“ NoneType”

时间:2019-07-04 14:55:49

标签: keras lstm

我需要对LSTM使用Bagging方法,对时间序列数据进行培训。我已经定义了模型库,并使用KerasRegressor链接到scikit-learn。但是具有AttributeError:'KerasRegressor'对象没有属性'loss'。我该如何解决?

更新:我使用了Manoj Mohan的方法(在第一个评论中),并且在拟合步骤中成功了。但是,当我将Manoj Mohan的类修改为

时,就会出现TypeError问题。
class MyKerasRegressor(KerasRegressor): 
    def fit(self, x, y, **kwargs):
        x = np.expand_dims(x, -2)
        super().fit(x, y, **kwargs)

    def predict(self, x, **kwargs):
        x = np.expand_dims(x, -2)
        super().predict(x, **kwargs)

它解决了与(.fit())相同的predict()的尺寸问题。 问题是:

TypeError                                 Traceback (most recent call last)
<ipython-input-84-68d76cb73e8b> in <module>
----> 1 pred_bag = bagging_model.predict(x_test)
TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

完整脚本:

def model_base_LSTM():

    model_cii = Sequential()

    # Make layers
    model_cii.add(CuDNNLSTM(50, return_sequences=True,input_shape=((1, 20))))
    model_cii.add(Dropout(0.4))

    model_cii.add(CuDNNLSTM(50, return_sequences=True))
    model_cii.add(Dropout(0.4))

    model_cii.add(CuDNNLSTM(50, return_sequences=True))
    model_cii.add(Dropout(0.4))

    model_cii.add(CuDNNLSTM(50, return_sequences=True))
    model_cii.add(Dropout(0.4))

    model_cii.add(Flatten())
    # Output layer
    model_cii.add(Dense(1))

    # Compile
    model_cii.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics=['accuracy'])

    return model_cii

model = MyKerasRegressor(build_fn = model_base_LSTM, epochs=100, batch_size =70)
bagging_model = BaggingRegressor(base_estimator=model, n_estimators=10)
train_model = bagging_model.fit(x_train, y_train)

bagging_model.predict(x_test)

Output:
TypeError                                 Traceback (most recent call last)
<ipython-input-84-68d76cb73e8b> in <module>
----> 1 pred_bag = bagging_model.predict(x_test)
TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

1 个答案:

答案 0 :(得分:1)

model_base_LSTM()方法中有错误。替换

return model

return model_cii

修复“检查输入时出错”的错误,可以添加一个额外的尺寸。这也解决了scikit-learn(2维)与Keras LSTM(3维)问题。创建KerasRegressor的子类来处理尺寸不匹配。

class MyKerasRegressor(KerasRegressor):
    def fit(self, x, y, **kwargs):
        x = np.expand_dims(x, -2)
        return super().fit(x, y, **kwargs)

    def predict(self, x, **kwargs):
        x = np.expand_dims(x, -2)
        return super().predict(x, **kwargs)

model = MyKerasRegressor(build_fn = model_base_LSTM, epochs=100, batch_size =70)