将嵌套的JSON转换为CSV

时间:2020-02-23 12:53:39

标签: python json pandas csv

这个问题可能在这里被问过几次了。我一直在尝试使嵌套的JSON文件变平并将其转换为CSV,但是我能得到的最接近的是列出字段名称:MyCount, from, Mysize, Allhits, aggs,但没有值:

Output.csv:

""
Mycount
from
Mysize
Allhits
aggs

我一直在尝试这段代码将JSON转换为CSV:

import json
import csv

def get_leaves(item, key=None):
    if isinstance(item, dict):
        leaves = {}
        for i in item.keys():
            leaves.update(get_leaves(item[i], i))
        return leaves
    elif isinstance(item, list):
        leaves = {}
        for i in item:
            leaves.update(get_leaves(i, key))
        return leaves
    else:
        return {key : item}


with open('path/to/my/file.json') as f_input:
    json_data = json.load(f_input)

# Paresing all entries to get the complete fieldname list
fieldnames = set()

for entry in json_data:
    fieldnames.update(get_leaves(entry).keys())

with open('/path/to/myoutput.csv', 'w', newline='') as f_output:
    csv_output = csv.DictWriter(f_output, fieldnames=sorted(fieldnames))
    csv_output.writeheader()
    csv_output.writerows(get_leaves(entry) for entry in json_data)

JSON结构如下:

{"Mycount":538,
"from":0,
"Mysize":1000,
"Allhits":[{
    "isVerified":true,
    "backgroundColor":"FF720B",
    "name":"yourShop",
    "Id":"12345678",
    "ActionItems":[{
        "subtitle":"Click here to start",
        "body":null,
        "language":"de",
        "title":"Start here",
        "isDefault":true}],
        "tintColor":"FFFFFF",
        "shoppingHours":[{"hours":[{"day":["SUNDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["MONDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["SATURDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["FRIDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["THURSDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["WEDNESDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["TUESDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]}]}],
        "LogoUrl":"https://url/to/my/logo.png",
        "coverage":[{
            "country":"*",
            "language":"*",
            "ratio":1}],
        "shoppingHours2":[{"hours":[{"day":["SUNDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["MONDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["SATURDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["FRIDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["THURSDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["WEDNESDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]},{"day":["TUESDAY"],"timeRange":[{"allDay":false,"from":25200,"to":68400}]}]}],
        "group":"shop_open",
        "timeZone":"CET",
        "phone":"+1234567890",
        "modTime":1234567890,
        "intId":"+123456789",
        "Logo2Url":"https://link/to/my/logo.png"}],
"aggs":{}}

使用pandas模块是否容易实现?我仍在学习python,因此,我对此表示感谢。从这个json文件中,我至少需要将id, intId, name, ratio和该字段名称的值提取到CSV中。

所需的输出应该是(或者它可以具有所有字段名称和值,然后我将能够直接从CSV中提取我需要的字段):

id          intId         name    ratio
12345678    123456789   yourShop    1

这只是一条记录的版本,但是我的输出文件必须包含JSON文件中所有ID的行。

谢谢您的帮助!

编辑 我也尝试了以下方法:

import json
import csv


x = '/path/to/myrecords.json'

x = json.loads(x)

f.writerow(["name", "id", "intId", "ratio"])

f = csv.writer(open("/path/to/my/output.csv", "w", newline=''))

for x in x:
    f.writerow([x["Allhits"]["name"],
                x["Allhits"]["id"],
                x["Allhits"]["ActionItems"]["intId"],
                x["Allhits"]["ActionItems"]["ratio"]])

但在x = json.loads(x)步骤中收到此错误:

    Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/myusername/anaconda3/lib/python3.6/json/__init__.py", line 354, in loads
    return _default_decoder.decode(s)
  File "/Users/myusername/anaconda3/lib/python3.6/json/decoder.py", line 339, in decode
    obj, end = self.raw_decode(s, idx=_w(s, 0).end())
  File "/Users/myusername/anaconda3/lib/python3.6/json/decoder.py", line 357, in raw_decode
    raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

3 个答案:

答案 0 :(得分:0)

如果您需要展平整个json(包括数组),则可以通过递归执行以下操作:

import json
import csv

def flatten(item, prefix=None):
    result = {}
    if isinstance(item, list):
        item = { i : item[i] for i in range(0, len(item) )}
    for key, val in item.items():
        prefixed_key = f"{prefix}{key}" if prefix else str(key)
        if isinstance(val, list) or isinstance(val, dict):
            result = {**result, **flatten(val, f"{prefixed_key}_")}
        else:
            result[prefixed_key] = val

    return result


with open('test.json') as f_input, open('result.csv', 'w', newline='') as f_output:
    writer = csv.writer(f_output)
    hits = json.load(f_input)["Allhits"]
    header_written = False
    for hit in hits:
        flat = flatten(hit)
        if not header_written:
            writer.writerow(flat.keys())
            header_written = True
        writer.writerow(flat.values())

使用此功能,您会得到以下csv怪胎:

isVerified,backgroundColor,name,Id,ActionItems_0_subtitle,ActionItems_0_body,ActionItems_0_language,ActionItems_0_title,ActionItems_0_isDefault,tintColor,shoppingHours_0_hours_0_day_0,shoppingHours_0_hours_0_timeRange_0_allDay,shoppingHours_0_hours_0_timeRange_0_from,shoppingHours_0_hours_0_timeRange_0_to,shoppingHours_0_hours_1_day_0,shoppingHours_0_hours_1_timeRange_0_allDay,shoppingHours_0_hours_1_timeRange_0_from,shoppingHours_0_hours_1_timeRange_0_to,shoppingHours_0_hours_2_day_0,shoppingHours_0_hours_2_timeRange_0_allDay,shoppingHours_0_hours_2_timeRange_0_from,shoppingHours_0_hours_2_timeRange_0_to,shoppingHours_0_hours_3_day_0,shoppingHours_0_hours_3_timeRange_0_allDay,shoppingHours_0_hours_3_timeRange_0_from,shoppingHours_0_hours_3_timeRange_0_to,shoppingHours_0_hours_4_day_0,shoppingHours_0_hours_4_timeRange_0_allDay,shoppingHours_0_hours_4_timeRange_0_from,shoppingHours_0_hours_4_timeRange_0_to,shoppingHours_0_hours_5_day_0,shoppingHours_0_hours_5_timeRange_0_allDay,shoppingHours_0_hours_5_timeRange_0_from,shoppingHours_0_hours_5_timeRange_0_to,shoppingHours_0_hours_6_day_0,shoppingHours_0_hours_6_timeRange_0_allDay,shoppingHours_0_hours_6_timeRange_0_from,shoppingHours_0_hours_6_timeRange_0_to,LogoUrl,coverage_0_country,coverage_0_language,coverage_0_ratio,shoppingHours2_0_hours_0_day_0,shoppingHours2_0_hours_0_timeRange_0_allDay,shoppingHours2_0_hours_0_timeRange_0_from,shoppingHours2_0_hours_0_timeRange_0_to,shoppingHours2_0_hours_1_day_0,shoppingHours2_0_hours_1_timeRange_0_allDay,shoppingHours2_0_hours_1_timeRange_0_from,shoppingHours2_0_hours_1_timeRange_0_to,shoppingHours2_0_hours_2_day_0,shoppingHours2_0_hours_2_timeRange_0_allDay,shoppingHours2_0_hours_2_timeRange_0_from,shoppingHours2_0_hours_2_timeRange_0_to,shoppingHours2_0_hours_3_day_0,shoppingHours2_0_hours_3_timeRange_0_allDay,shoppingHours2_0_hours_3_timeRange_0_from,shoppingHours2_0_hours_3_timeRange_0_to,shoppingHours2_0_hours_4_day_0,shoppingHours2_0_hours_4_timeRange_0_allDay,shoppingHours2_0_hours_4_timeRange_0_from,shoppingHours2_0_hours_4_timeRange_0_to,shoppingHours2_0_hours_5_day_0,shoppingHours2_0_hours_5_timeRange_0_allDay,shoppingHours2_0_hours_5_timeRange_0_from,shoppingHours2_0_hours_5_timeRange_0_to,shoppingHours2_0_hours_6_day_0,shoppingHours2_0_hours_6_timeRange_0_allDay,shoppingHours2_0_hours_6_timeRange_0_from,shoppingHours2_0_hours_6_timeRange_0_to,group,timeZone,phone,modTime,intId,Logo2Url
True,FF720B,yourShop,12345678,Click here to start,,de,Start here,True,FFFFFF,SUNDAY,False,25200,68400,MONDAY,False,25200,68400,SATURDAY,False,25200,68400,FRIDAY,False,25200,68400,THURSDAY,False,25200,68400,WEDNESDAY,False,25200,68400,TUESDAY,False,25200,68400,https://url/to/my/logo.png,*,*,1,SUNDAY,False,25200,68400,MONDAY,False,25200,68400,SATURDAY,False,25200,68400,FRIDAY,False,25200,68400,THURSDAY,False,25200,68400,WEDNESDAY,False,25200,68400,TUESDAY,False,25200,68400,shop_open,CET,+1234567890,1234567890,+123456789,https://link/to/my/logo.png

但是,如果您只需要特定的键,则可以遍历Allhits并检索所需的内容,如下所示:

with open('test.json') as f_input, open('result.csv', 'w', newline='') as f_output:
    writer = csv.writer(f_output)
    hits = json.load(f_input)["Allhits"]
    writer.writerow(["Id", "intId", "name", "ratio"])
    for hit in hits:
        writer.writerow([hit["Id"], hit["intId"], hit["name"], hit["coverage"][0]["ratio"]])

答案 1 :(得分:0)

尝试一下。这将在Allhits列表中循环并获得所需的最少数据集:

import json
import csv

with open('/path/to/myrecords.json') as f_input:
    json_data = json.load(f_input)

with open('/path/to/my/output.csv', 'w', newline='') as f_output:
    csv_output  = csv.writer(f_output)
    csv_output.writerow(["id", "intId", "name", "ratio"])
    for x in json_data['Allhits']:
        csv_output.writerow([x["Id"], x["intId"], x["name"], x["coverage"][0]["ratio"]])

答案 2 :(得分:0)

x = json.loads(x)

json.decoder.JSONDecodeError:预期值:第1行第1列(字符 0)

这是因为json.loads在文件名作为x传递时期望包含json数据的字符串。

"Allhits":[{...}]是包含字典的单个元素列表 将x["Allhits"]["name"]替换为x["Allhits"][0]["name"]。访问诸如"Id"之类的其他元素时,也是如此。