嗨,我正在尝试使用“ fmikaelian / flaubert-base-uncased-squad”回答问题。我知道我应该加载模型和令牌生成器。我不确定该怎么做。
我的代码基本上已经结束
from transformers import pipeline, BertTokenizer
nlp = pipeline('question-answering', \
model='fmikaelian/flaubert-base-uncased-squad', \
tokenizer='fmikaelian/flaubert-base-uncased-squad')
这大概可以用两个衬套来解决。
非常感谢
EDIT
我也尝试过使用自动模型,但似乎不存在这些模型:
OSError: Model name 'flaubert-base-uncased-squad' was not found in model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed 'flaubert-base-uncased-squad' was a path or url to a configuration file named config.json or a directory containing such a file but couldn't find any such file at this path or url.
EDIT II 我尝试遵循以下代码建议的方法来加载从S3保存的模型:
tokenizer_ = FlaubertTokenizer.from_pretrained(MODELS)
model_ = FlaubertModel.from_pretrained(MODELS)
p = transformers.QuestionAnsweringPipeline(
model=transformers.AutoModel.from_pretrained(MODELS),
tokenizer=transformers.AutoTokenizer.from_pretrained(MODELS)
)
question_="Quel est le montant de la garantie?"
language_="French"
context_="le montant de la garantie est € 1000"
output=p({'question':question_, 'context': context_})
print(output)
不幸的是,我得到了以下错误:
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
Traceback (most recent call last):
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 114, in _main
File "question_extraction.py", line 61, in <module>
prepare(preparation_data)
output=p({'question':question_, 'context': context_}) File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 225, in prepare
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\pipelines.py", line 802, in __call__
_fixup_main_from_path(data['init_main_from_path'])
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
run_name="__mp_main__")
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\runpy.py", line 263, in run_path
pkg_name=pkg_name, script_name=fname)
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\runpy.py", line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\... ...\Box Sync\nlp - 2...\NLP\src\question_extraction.py", line 61, in <module>
output=p({'question':question_, 'context': context_})
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\pipelines.py", line 802, in __call__
for example in examples
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\pipelines.py", line 802, in <listcomp>
for example in examples
for example in examples File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\pipelines.py", line 802, in <listcomp>
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\data\processors\squad.py", line 304, in squad_convert_examples_to_features
for example in examples
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\site-packages\transformers\data\processors\squad.py", line 304, in squad_convert_examples_to_features
with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\context.py", line 119, in Pool
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\context.py", line 119, in Pool
context=self.get_context())context=self.get_context())
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\pool.py", line 174, in __init__
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\pool.py", line 174, in __init__
self._repopulate_pool()self._repopulate_pool()
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\pool.py", line 239, in _repopulate_pool
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\pool.py", line 239, in _repopulate_pool
w.start()
w.start()
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\process.py", line 105, in start
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\context.py", line 322, in _Popen
self._popen = self._Popen(self)
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
return Popen(process_obj) File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\popen_spawn_win32.py", line 33, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)reduction.dump(process_obj, to_child)
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 143, in get_preparation_data
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\reduction.py", line 60, in dump
_check_not_importing_main()
File "C:\Users\... ...\AppData\Local\Continuum\Anaconda3\envs\nlp_nlp\lib\multiprocessing\spawn.py", line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.''')
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
ForkingPickler(file, protocol).dump(obj)
BrokenPipeError: [Errno 32] Broken pipe
*编辑IV *
我通过将函数放在“ 主要”中解决了先前的EDIT错误。 不幸的是,当我运行以下代码时:
tokenizer_ = FlaubertTokenizer.from_pretrained(MODELS)
model_ = FlaubertModel.from_pretrained(MODELS)
def question_extraction(text, question, model, tokenizer, language="French", verbose=False):
if language=="French":
nlp = pipeline('question-answering', \
model=model, \
tokenizer=tokenizer)
else:
nlp=pipeline('question-answering')
output=nlp({'question':question, 'context': text})
answer, score = output.answer, output.score
if verbose==True:
print("Q: ", question ,"\n",\
"A:", answer,"\n", \
"Confidence (%):", "{0:.2f}".format(str(score*100) )
)
return answer, score
if __name__=="__main__":
question_="Quel est le montant de la garantie?"
language_="French"
text="le montant de la garantie est € 1000"
answer, score=question_extraction(text, question_, model_, tokenizer_, language_, verbose= True)
我遇到以下错误:
C:\...\NLP\src>python question_extraction.py
OK
OK
convert squad examples to features: 100%|████████████████████████████████████████████████| 1/1 [00:00<00:00, 4.66it/s]
add example index and unique id: 100%|███████████████████████████████████████████████████████████| 1/1 [00:00<?, ?it/s]
Traceback (most recent call last):
File "question_extraction.py", line 77, in <module>
answer, score=question_extraction(text, question_, model_, tokenizer_, language_, verbose= True)
File "question_extraction.py", line 60, in question_extraction
output=nlp({'question':question, 'context': text})
File "C:\...\transformers\pipelines.py", line 818, in __call__
start, end = self.model(**fw_args)
ValueError: not enough values to unpack (expected 2, got 1)
答案 0 :(得分:0)
如the source中所述,有一个特定的QuestionAnsweringPipeline
。下面的示例是我用来成功加载Flaubert模型的示例。
import transformers as trf
p = trf.QuestionAnsweringPipeline(model=trf.AutoModel.from_pretrained("fmikaelian/flaubert-base-uncased-squad"), tokenizer=trf.AutoTokenizer.from_pretrained("fmikaelian/flaubert-base-uncased-squad"))
当然,还有另外一种使用预先训练的模型FlaubertForQuestionAnswering
的方法,因为pipeline
只是随最新版本一起发布的,可能会随时更改。