我有一个分类问题,我想确定不应该被邀请参加银行会议的潜在借款人。 在数据中,不应邀请25%的借款人。 我有大约4500个观测值和86个功能部件(许多虚拟对象)。
清除数据后,我会做:
# Separate X_train and Y_train
X = ratings_prepared[:, :-1]
y= ratings_prepared[:,-1]
##################################################################################
# Separate test and train (stratified, 20% test)
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
for train_index, test_index in skfolds.split(X,y):
X_train = X[train_index]
y_train = y[train_index]
X_test = X[test_index]
y_test = y[test_index]
然后,我继续训练模型。 SGD分类器效果不佳:
def plot_roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label =label)
plt.plot([0,1], [0,1],'k--')
plt.axis([0,1,0,1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1],"b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.xlabel("Threashold")
plt.legend(loc="center left")
plt.ylim([0,1])
############################# Train Models #############################
from sklearn.linear_model import SGDClassifier
sgd_clf =SGDClassifier(random_state=42)
sgd_clf.fit(X_train,y_train)
y_pred = sgd_clf.predict(X_train)
# f1 score
f1_score(y_train, y_pred)
# confusion matrix
tn, fp, fn, tp = confusion_matrix(y_train, y_pred).ravel()
(tn, fp, fn, tp)
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
disp = plot_confusion_matrix(sgd_clf, X_train, y_train,
cmap=plt.cm.Blues,
normalize='true')
# recall and precision
from sklearn.metrics import precision_score, recall_score
precision_score(y_train, y_pred)
# Precision Recall
from sklearn.metrics import precision_recall_curve
plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()
# Plot ROC curve
y_scores = cross_val_predict(sgd_clf, X_train, y_train, cv=3, method="decision_function")
fpr, tpr, thresholds = roc_curve(y_train, y_scores)
plot_roc_curve(fpr, tpr)
plt.show()
# recall and precision
from sklearn.metrics import precision_score, recall_score
precision_score(y_train, y_pred)
### Precision score: 0.5084427767354597
然后我继续使用随机森林分类器,该分类器应在SGD上有所改进
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(random_state=42)
y_probas_forest = cross_val_predict(forest_clf, X_train, y_train, cv=3, method='predict_proba')
y_scores_forest = y_probas_forest[:,1]
fpr_forest, tpr_forest, threshold_forest = roc_curve(y_train,y_scores_forest)
plt.plot(fpr, tpr, "b:", label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "Random Forest")
plt.legend(loc="lower right")
plt.show()
实际上ROC曲线看起来更好:
但是混淆矩阵和精度得分非常奇怪:
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(random_state=42)
y_probas_forest = cross_val_predict(forest_clf, X_train, y_train, cv=3, method='predict_proba')
y_scores_forest = y_probas_forest[:,1]
fpr_forest, tpr_forest, threshold_forest = roc_curve(y_train,y_scores_forest)
forest_clf.fit(X_train,y_train)
y_pred = forest_clf.predict(X_train)
# f1 score
f1_score(y_train, y_pred)
# confusion matrix
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
disp = plot_confusion_matrix(forest_clf, X_train, y_train,
cmap=plt.cm.Blues,
normalize='true')
F分数也为1。我不明白这里发生了什么。我怀疑我做错了,但是SGD分类器似乎可以正常运行的事实使我认为这与数据清理无关。
任何可能出问题的主意吗?
#更新:
1)绝对值混淆矩阵:
2)降低阈值:
答案 0 :(得分:1)
您获得满分的原因是因为您没有对测试数据进行度量。
在第一段中,您将训练和测试数据划分为80/20,但是所有指标ROC,混淆矩阵等都是在原始训练数据上而不是测试数据上完成的。
通过这样的设置,您的报告会显示出您太疯狂了。
您应该做的是将训练有素的模型应用于测试数据,并查看该模型如何工作。