错误未捕获(保证)错误是什么?错误:由数据集生成的要素数据缺少必需的输入键'dense_Dense1_input'。是什么意思?我尝试了不同的方法来解决此问题,例如不同的输入形状和不同的批处理大小,但似乎没有任何效果。我有一个具有484个要素和30行的数据输入,以及一个具有1列和30行的标签集。
确切的错误是:
Uncaught (in promise) Error: The feature data generated by the dataset lacks the required input key 'dense_Dense1_input'.
at new e (errors.ts:48)
at Wd (training_dataset.ts:277)
at Pd (training_dataset.ts:222)
at training_dataset.ts:421
at common.ts:14
at Object.next (common.ts:14)
at o (common.ts:14)
我的代码
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.5.2/dist/tf.min.js"></script>
<title>test</title>
</head>
<body>
<script>
const csvUrlData = '/image_data.csv';
const csvUrlLabel = '/number_data.csv';
const headers_image = Array.from(Array(484).keys());
const headers_image_string = headers_image.map(String);
async function run() {
const csvDataset = tf.data.csv(
csvUrlData,{
hasHeader: false,
columnNames: headers_image_string
});
const csvLabelset = tf.data.csv(
csvUrlLabel, {
columnConfigs: {
label_numbers: {
isLabel: true
}
}
}
);
const flattenedDataset = tf.data.zip({xs: csvDataset, ys: csvLabelset}).batch(5);
const model = tf.sequential();
model.add(tf.layers.dense({
inputShape: [484],
units: 1
}));
model.compile({
optimizer: tf.train.sgd(0.00000001),
loss: 'meanSquaredError'
});
return await model.fitDataset(flattenedDataset, {
epochs: 10,
callbacks: {
onEpochEnd: async (epoch, logs) => {
console.log(epoch + ':' + logs.loss);
}
}
});
}
run();
</script>
</body>
</html>
答案 0 :(得分:1)
isLabel
属性不应在labelDataset
中使用,因为压缩后的数据。这将为标签创建一个嵌套对象。如果必须使用它,则必须使用运算符map
仅检索ys
的{{1}}属性。
labelDataset
然后 const csvDataset = tf.data.csv(
csvUrlData,{
hasHeader: false,
columnNames: headers_image_string
});
const csvLabelset = tf.data.csv(
csvUrlLabel, {
columnConfigs: {
label_numbers: {
isLabel: true
}
}
}
);
const flattenedcsvDataset =
csvDataset
.map((data) =>
{
return Object.values(data)
})
const flattenedcsvLabelset =
csvDataset
.map((data) =>
{
return Object.values(data)
})
const flattenedDataset = tf.data.zip({xs: flattenedcsvDataset, ys: flattenedcsvLabelset}).batch(5);
可用于训练。
flattenedDataset
const csvUrl =
'https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/boston-housing-train.csv';
(async function run() {
const csvDataset = tf.data.csv(
csvUrl, {
columnConfigs: {
/* medv: {
isLabel: true
}*/
}
});
// Number of features is the number of column names minus one for the label
// column.
const numOfFeatures = (await csvDataset.columnNames()).length ;
// Prepare the Dataset for training.
const flattenedDataset =
csvDataset
.map((data) =>
{
return Object.values(data)
})
const zip = tf.data.zip({xs: flattenedDataset, ys: flattenedDataset}).batch(10)
// Define the model.
const model = tf.sequential();
model.add(tf.layers.dense({
inputShape: [numOfFeatures],
units: numOfFeatures
}));
model.compile({
optimizer: tf.train.sgd(0.000001),
loss: 'meanSquaredError'
});
// Fit the model using the prepared Dataset
return model.fitDataset(zip, {
epochs: 10,
callbacks: {
onEpochEnd: async (epoch, logs) => {
console.log(epoch + ':' + logs.loss);
}
}
});
})()