我有一个形状为(1000,3,162)的多维数组 X_train :
[[[ 0 0 0 ... 0 0 0]
[ 0 0 0 ... 0 0 0]
[22175 0 0 ... 0 0 0]]
[[ 0 0 0 ... 0 0 0]
[22175 0 0 ... 0 0 0]
[37363 39010 0 ... 0 0 0]]
[[22175 0 0 ... 0 0 0]
[37363 39010 0 ... 0 0 0]
[31559 42695 0 ... 0 0 0]]
...
[[20651 31559 43650 ... 0 0 0]
[20651 12733 40329 ... 0 0 0]
[31559 15394 31559 ... 0 0 0]]]
我的模型如下:
main_input = Input(shape=(162,)) # only pass in the indexes
emb = Embedding(input_dim=3, output_dim = 162)(main_input)
doc_output = Bidirectional(LSTM(64, return_sequences=False))(emb)
doc_output = Dense(units=43, activation='softmax')(doc_output)
model = Model(inputs=main_input, outputs=doc_output)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
history=model.fit(X_train,y_train,epochs=1,batch_size=128,validation_data=(X_test, y_test))
我收到此错误
检查输入时出错:预期input_7具有2维,但数组的形状为(1000,3,162)
模型摘要在这里
当训练和测试数据为3维时,如何添加此输入数组以将其输入到嵌入层中?