我正在构建多类CNN模型,但由于损失形状误差而无法编译该模型。
import numpy as np
import pandas as pd
from preprocess import DataLoader
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv3D, Dropout, MaxPooling3D
from tensorflow.keras.metrics import categorical_crossentropy
from tensorflow.keras import optimizers
target_width = 160
target_height = 192
target_depth = 192
num_classes = 3
batch_size = 4
data_loader = DataLoader(target_shape=(target_width, target_height, target_depth))
train, test = data_loader.Get_Data_List()
print("Train size: " + str(len(train)))
print("Test size: " + str(len(test)))
def custom_one_hot(labels):
label_dict = {"stableAD":np.array([0,0,1]),
"stableMCI":np.array([0,1,0]),
"stableNL":np.array([1,0,0])}
encoded_labels = []
for label in labels:
encoded_labels.append(label_dict[label].reshape(1,3))
return np.asarray(encoded_labels)
def additional_data_prep(train, test):
# Extract data from tuples
train_labels, train_data = zip(*train)
test_labels, test_data = zip(*test)
X_train = np.asarray(train_data)
X_test = np.asarray(test_data)
y_train = custom_one_hot(train_labels)
y_test = custom_one_hot(test_labels)
return X_train, y_train, X_test, y_test
X, y, X_test, y_test = additional_data_prep(train, test)
X = np.expand_dims(X, axis=-1).reshape((X.shape[0],target_width,target_height,target_depth,1))
X_test = np.expand_dims(X_test, axis=-1).reshape((X_test.shape[0],target_width,target_height,target_depth,1))
model = Sequential()
model.add(Conv3D(24, kernel_size=(13, 11, 11), activation='relu', input_shape=(target_width,target_height,target_depth,1), padding='same', strides=4))
model.add(MaxPooling3D(pool_size=(3, 3, 3), strides=2))
model.add(Dropout(0.1))
model.add(Conv3D(48, kernel_size=(6, 5, 5), activation='relu', padding='same'))
model.add(MaxPooling3D(pool_size=(3, 3, 3), strides=2))
model.add(Dropout(0.1))
model.add(Conv3D(24, kernel_size=(4, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(3, 3, 3), strides=2))
model.add(Dropout(0.1))
model.add(Conv3D(8, kernel_size=(2, 2, 2), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 1, 1), strides=2))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.Adam(learning_rate=0.0015),
metrics=['accuracy','categorical_crossentropy'])
model.fit(X, y, batch_size=batch_size, epochs=10, verbose=2, use_multiprocessing=True)
model.evaluate(X_test, y_test, verbose=2, use_multiprocessing=True)
此错误消息的结果:
Traceback (most recent call last):
File "train.py", line 70, in <module>
model.fit(X, y, batch_size=batch_size, epochs=10, verbose=2, use_multiprocessing=True)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 235, in fit
use_multiprocessing=use_multiprocessing)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 593, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 646, in _process_inputs
x, y, sample_weight=sample_weights)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2383, in _standardize_user_data
batch_size=batch_size)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2489, in _standardize_tensors
y, self._feed_loss_fns, feed_output_shapes)
File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_utils.py", line 810, in check_loss_and_target_compatibility
' while using as loss `' + loss_name + '`. '
ValueError: A target array with shape (8, 1, 3) was passed for an output of shape (None, 3) while using as loss `categorical_crossentropy`. This loss expects targets to have the same shape as the output.
答案 0 :(得分:0)
custom_one_hot
函数返回一个[M, 1, 3]
数组。由于CNN的输出为[M, 3]
,因此应将其重塑为[M, 3]
。 M是批量大小。