使用:
我遵循了TF-gpu的官方TF文档,并且尝试创建并拟合一个简单的CNN模型(在a.py文件中,我尝试使用jupyter,但内核始终死机),但是我得到了以下:
2020-02-06 23:57:14.420911: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2020-02-06 23:57:16.081396: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-02-06 23:57:16.861094: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-02-06 23:57:16.861492: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-02-06 23:57:16.862290: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2020-02-06 23:58:14.322053: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-02-06 23:58:14.324900: F tensorflow/stream_executor/lib/statusor.cc:34] Attempting to fetch value instead of handling error Internal: failed to get device attribute 13 for device 0: CUDA_ERROR_UNKNOWN: unknown error
有人知道如何使tf-gpu 2.0.0正常运行吗?我已经用2.1.0进行了测试,但是问题似乎仍然存在。
答案 0 :(得分:0)
即使在Github中也提供了解决方案,还是为了Stackoverflow社区的利益。
通过以下组合安装Tensorflow_GPU : 2.1.0
已解决CUDA_ERROR_UNKNOWN
问题。
答案 1 :(得分:0)
在我的情况下,如here所述,限制了GPU内存的工作。
在代码中添加以下内容:
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)