版本:Python 3.7.6
,pandas 1.0.0
输入数据框
df = pd.DataFrame(dict(
recruit_dt=["1/1/2017"]*3+["1/1/2018"]*3+["1/1/2019"]*3,
label = [1,3,4]*3,
nmem = np.random.choice(list(range(10000,3000000)),9),
pct_fem = np.random.sample(9),
mean_age = 50 + 10*np.random.sample(9),
sd_age = 8 + 2*np.random.sample(9)
))
想在下面的转换后介绍这个
dfp = pd.pivot_table(df, values=["nmem","pct_fem","mean_age","sd_age"], index="recruit_dt", columns="label")
dfp = dfp.reindex(columns=['nmem', 'pct_fem', 'mean_age', 'sd_age'], level=0)
如何编写样式器,以便所有nmem
列都具有千位分隔符{:,}
,'pct_fem'是百分数到两位小数位,mean_age
和sd_age
是小数点后两位的浮点数?是否有将styler.format
或styler.apply
与IndexSlice
一起使用的方法?
== 编辑:这似乎起作用。有更简洁的解决方案吗?
dfp.columns.names = ["metrics","label"]
dfp.style.format("{:,}", subset=pd.IndexSlice[:,'nmem']) \
.format("{:.2%}", subset=pd.IndexSlice[:,'pct_fem']) \
.format("{:.2f}", subset=pd.IndexSlice[:,['mean_age','sd_age']])
答案 0 :(得分:2)
您可以使用列表理解功能为subset
参数指定一个参数,以选择相关的列。
>>> (dfp
.style
.format('{:.0f}', na_rep='-', subset=[col for col in dfp.columns if col[0] == 'nmen'])
.format('{:.2%}', na_rep='-', subset=[col for col in dfp.columns if col[0] == 'pct_fem'])
.format('{:,.2f}', na_rep='-', subset=[col for col in dfp.columns if col[0] in {'mean_age', 'sd_age'}])
)
更通用的解决方案:
# Styles.
pct_two = '{:.2%}'
comma_float = '{:.0f}'
comma_float_2 = '{:.2f}'
# Styling to be applied to specified columns.
formats = {
'nmean': comma_float,
'pct_fem': pct_two,
'mean_age': comma_float_2,
'sd_age': comma_float_2,
}
# Create dictionary of multi-index columns with specified styling.
format_dict = {
midx: formats[level_val]
for level_val in formats
for midx in [col for col in dfp if col[0] == level_val]
}
# Apply styling to dataframe.
dfp.style.format(format_dict)
答案 1 :(得分:1)
让我们尝试一下:
idx = pd.IndexSlice
formatter_dict = {i:"{:,}" for i in dfp.loc[:, idx['nmem', :]].columns}
formatter_dict2 = {i:"{:.2%}" for i in dfp.loc[:, idx['pct_fem', :]].columns}
formatter_dict3 = {i:"{:.2f}" for i in dfp.loc[:, idx[['mean_age', 'sd_age'], :]].columns}
formatter_dict.update(formatter_dict2)
formatter_dict.update(formatter_dict3)
dfp.style.format(formatter_dict)