将Column(str)转换为(Float),ValueError:无法将字符串转换为float:'Null'

时间:2020-02-03 17:37:00

标签: python pandas

对不起,我知道这个问题已经回答过了,我尝试了所有答案并进行了研究,并尝试了4个小时的不同尝试。我做不完。

我相信我的数据有些奇怪。

因此,请遵循我的数据和尝试:

x = pd.DataFrame({ "Cost" : [ "83.53462540716612" , "0.0" , "66.6315396408911" , "340.9281334351922" , "181.8128056341571" , "0.00" ]

我的尝试:

###Attempt 0
# x["Cost"] = x["Cost"].str.replace(' ', '')
# x["Cost"] = x["Cost"].str.replace(',', '').astype(float)


###Attempt 1
#x = x.where((pd.notnull(x)), None)
#x["Cost"]  = float(len(x["Cost"]))


###Attempt 2
#x["Cost"].isdecimal()
#x = [float(x) for x in range(len(x["Cost"])) ]


###Attempt 3
#[float(x) for x in x["Cost"].strip().split()]


###Attempt 4
#x["Cost2"] = x["Cost"].append([float(str(x)) for x in x["Cost"].split(' ') if len(x)>1])


###Attempt 5
#x["Cost"]  = pd.get_dummies(x["Cost"]).values


没有任何效果。 得到这样的错误:

ValueError: could not convert string to float: 'Null'

# else, only a single dtype is given
# _astype_nansafe works fine with 1-d only
# TODO(extension)
# Explicit copy, or required since NumPy can't view from / to object.

1 个答案:

答案 0 :(得分:1)

您可以使用pd.to_numeric,并强制转换错误,以便在无法转换的情况下产生NaN值。

x = pd.DataFrame({ "Cost" : [ "Null", "1,083.53462540716612" , "0.0" , "66.6315396408911" , "340.9281334351922" , "181.8128056341571" , "0.00" ]})

x['Cost'] = pd.to_numeric(x['Cost'].str.replace(",", ""), errors='coerce')
>>> x

          Cost
0          NaN
1  1083.534625
2     0.000000
3    66.631540
4   340.928133
5   181.812806
6     0.000000