如何使用多个定界符分割熊猫数据框?

时间:2020-01-31 15:35:20

标签: python pandas split delimiter

我是Pandas的新手,并且有一个如下所示的数据框(“临时”):

                           ts;"val"
0       2019-12-02T19:59:32.735;75.2
1       2019-12-02T20:00:53.276;75.2
2       2019-12-02T20:02:01.170;75.2
3      2019-12-02T20:03:09.159;75.02
4       2019-12-02T20:04:17.145;75.2
5       2019-12-02T20:05:25.131;75.2
6      2019-12-02T20:06:33.116;75.02
7      2019-12-02T20:07:40.100;75.02
8      2019-12-02T20:08:48.087;74.84
9      2019-12-02T20:09:56.071;74.66
10     2019-12-02T20:11:04.063;74.66
11     2019-12-02T20:12:12.055;74.48
12     2019-12-02T20:13:20.041;74.48
13      2019-12-02T20:14:28.028;74.3
14     2019-12-02T20:15:36.012;74.12
15     2019-12-02T20:16:42.997;74.12
16     2019-12-02T20:17:50.983;74.12
17     2019-12-02T20:18:58.969;74.12
18     2019-12-02T20:20:06.955;74.12
19     2019-12-02T20:21:14.938;74.12

我想将其分为3列:“日期”,“时间”和“值”。

我当前正在使用temp_d1 = temp['ts;"val"'].apply(lambda x: pd.Series(x.split('T'))),然后在temp_d1上重复此操作,然后连接temp_d1和temp_d2(新数据帧)。

是否有更好/更容易的方法?

3 个答案:

答案 0 :(得分:0)

看起来您的数据框已将预设定界符设置为;

更改您的pd.read_csv来处理它,即pd.read_csv(file,sep=';')

然后应用pd.to_datetime

如果这不起作用,则可以执行以下操作:

df2 = df['ts;"val"'].str.split(';',expand=True)
df2['time'] = df2[0].apply(pd.to_datetime,format='%Y-%m-%dT%H:%M:%S').dt.floor('s').dt.time

df2[0] = df2[0].apply(pd.to_datetime,format='%Y-%m-%dT%H:%M:%S').dt.normalize()
df2.columns = ['date', 'value','time']
print(df2[['date','time','value']])

         date      time  value
0  2019-12-02  19:59:32   75.2
1  2019-12-02  20:00:53   75.2
2  2019-12-02  20:02:01   75.2
3  2019-12-02  20:03:09  75.02
4  2019-12-02  20:04:17   75.2
5  2019-12-02  20:05:25   75.2
6  2019-12-02  20:06:33  75.02
7  2019-12-02  20:07:40  75.02
8  2019-12-02  20:08:48  74.84
9  2019-12-02  20:09:56  74.66
10 2019-12-02  20:11:04  74.66
11 2019-12-02  20:12:12  74.48
12 2019-12-02  20:13:20  74.48
13 2019-12-02  20:14:28   74.3
14 2019-12-02  20:15:36  74.12
15 2019-12-02  20:16:42  74.12
16 2019-12-02  20:17:50  74.12
17 2019-12-02  20:18:58  74.12
18 2019-12-02  20:20:06  74.12
19 2019-12-02  20:21:14  74.12

答案 1 :(得分:0)

以下是使用列表理解的方法:

temp['Date'] = [x.split('T')[0] for x in temp['ts;"val"']]
temp['Time'] = [x.split('T')[1].split(';')[0] for x in temp['ts;"val"']]
temp['Value'] = [x.split(';')[1] for x in temp['ts;"val"']]

输出:

                        ts;"val"        Date          Time  Value
0   2019-12-02T19:59:32.735;75.2  2019-12-02  19:59:32.735   75.2
1   2019-12-02T20:00:53.276;75.2  2019-12-02  20:00:53.276   75.2
2   2019-12-02T20:02:01.170;75.2  2019-12-02  20:02:01.170   75.2
3  2019-12-02T20:03:09.159;75.02  2019-12-02  20:03:09.159  75.02
4   2019-12-02T20:04:17.145;75.2  2019-12-02  20:04:17.145   75.2

答案 2 :(得分:0)

您可以执行以下操作:

  1. 前10位数字是日期
  2. 向前11位是时间

    df['Date'] = df['ts'].str[:10]    
    df['Time'] = df['ts'].str[11:]