Jupyter:内核似乎已经死亡。它将自动重启。 (与Keras相关)

时间:2020-01-28 12:40:20

标签: python tensorflow keras deep-learning jupyter-notebook

我正在尝试训练Resnet50,但是无论如何我都做不到,因为Jupyter笔记本的内核快要死了(The kernel appears to have died. It will restart automatically)(它开始训练时)(Epoch 1/100)。我有GeForce GTX 1060 Ti,在训练中进行nvidia-smi(虽然持续1秒)时,与过去相比,我只看到分配了80 MB的内存,然后内核死了,就好像它尝试但失败了。

以下是要求:

pandas==0.25.1
numpy==1.17.2
opencv-python==4.1.1.26
scikit-image==0.15.0
scikit-learn==0.21.3
tensorflow-gpu==1.14.0
Keras==2.2.5
matplotlib==3.1.1
Pillow==6.1.0
albumentations==0.3.2
tqdm==4.35.0
jupyter

我很满意。这是我设置培训课程的方式:

config = tf.ConfigProto()
config.gpu_options.allow_growth = False
config.gpu_options.per_process_gpu_memory_fraction = 0.9
sess = tf.Session(config=config) 
keras.backend.set_session(sess)

keras.__version__
os.environ["CUDA_VISIBLE_DEVICES"] = '0' #yes, this is the ID of my GPU.

# create the FCN model
model_mobilenet = ResNet50(input_shape=(1024, 1024, 3), include_top=False) # use the Resnet
model_x8_output = Conv2D(128, (1, 1), activation='relu')(model_mobilenet.layers[-95].output)
model_x8_output = UpSampling2D(size=(8, 8))(model_x8_output)
model_x8_output = Conv2D(3, (3, 3), padding='same', activation='sigmoid')(model_x8_output)
MODEL_x8 = Model(inputs=model_mobilenet.input, outputs=model_x8_output)

MODEL_x8.compile(loss='binary_crossentropy', optimizer=Adam(lr=1e-3), metrics=[jaccard_distance])

MODEL_x8.fit_generator(train_generator, steps_per_epoch=300, epochs=100, verbose=1, validation_data=val_generator, validation_steps=10)

Epoch 1/100
  1/300 [..............................] - ETA: 1:01:59 - loss: 0.7193 - jaccard_distance: 0.1125

我尝试设置:

  • config.gpu_options.allow_growthTrue
  • config.gpu_options.per_process_gpu_memory_fraction到任何其他任意值,例如0.1
  • 评论:#os.environ["CUDA_VISIBLE_DEVICES"] = 0

他们都没有工作。我感谢建设性的答案。

谢谢。

编辑:我现在尝试将其作为脚本(而不是笔记本)运行,并且在Tensorflow会话行出现时,终端抛出以下内容:

2020-01-28 13:44:55.756819: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.757047: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.757313: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.757526: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.757736: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.757940: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/username/ros_ws/devel/lib:/opt/ros/melodic/lib
2020-01-28 13:44:55.808416: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2020-01-28 13:44:55.808444: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1663] Cannot dlopen some GPU libraries. Skipping registering GPU devices...

这很奇怪,因为我没有CUDA 10,而没有9.0,所以甚至不应该问这个。我的Tensorflow版本不正确吗?

2 个答案:

答案 0 :(得分:2)

最可能的原因是没有足够的内存来存储数据/模型。您输入的图像尺寸也是1024x1024。我建议您尝试使用像256甚至128这样的小图像进行训练,以查看它是否至少有效。

还,TF是否检测到您的GPU?

答案 1 :(得分:1)

好的,知道了。

问题是我的tensorflow = gpu版本(1.14)与我的CUDA版本(9.0)不兼容。我必须安装低于1.13的版本。但这不是唯一的收获。我的CuDNN版本(705)也有问题,我不得不将Tensorflow-gpu一直降低到1.9.0。

现在一切正常。