尝试做一个识别手写数字的项目来学习张量流。使用已成功安装tensorflow的Anaconda环境(已通过线性函数模型进行了测试)。但是,它一直向我显示:内核似乎已经死亡。它将自动重启。
这是我的代码:
import tensorflow as tf
old_v = tf.logging.get_verbosity()
tf.logging.set_verbosity(tf.logging.ERROR)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('DESKTOP/HWnumber',one_hot=True)
batch_size = 100
batch_n = mnist.train.num_examples // batch_size
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
m = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,m)+b)
loss = tf.reduce_mean(tf.square(y-prediction))
train = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
init = tf.global_variables_initializer()
Check = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
accuracy = tf.reduce_mean(tf.cast(Check,tf.float32))
with tf.Session() as sess:
sess.run(init)
for Iter in range (21):
for batch in range (batch_n):
batchx,batchy = mnist.train.next_batch(batch_size)
sess.run(train,feed_dict={x:batchx,y:batchy})
acc = sess.run(accuracy,feed_dict
{x:mnist.test.images,y:mnist.test.labels})
print (str(Iter),str(acc))