我有以下数据框:
HomeTeam = ["A", "B", "B", "D", "C", "A", "C", "D"]
AwayTeam = ["C", "D", "A", "C", "B", "D", "A", "B"]
Result = ["HT", "AT", "HT", "HT", "D", "AT", "D", "AT"]
Round = [1,1,2,2,3,3,4,4]
dict = {'HomeTeam': HomeTeam, 'AwayTeam': AwayTeam, 'Result': Result, 'Round': Round}
df = pd.DataFrame(dict)
df
结果在哪里:
“ HT” =赢得HomeTeam-> HomeTeam + 3,AwayTeam 0
“ AT” =赢得AwayTeam-> HomeTeam 0,AwayTeam +3
“ D” =平局-> HomeTeam +1,AwayTeam +1
我需要创建两个不同的列:
1)累计积分主队:它包含从该主队获得的直到该比赛的总分。
2)客队累积得分:它包含了直到该比赛为止客队获得的总积分。
我正在使用Python
,但是我的循环效果并不理想。
这是我的预期结果:
答案 0 :(得分:2)
无循环的解决方案,仅使用熊猫即可灵活
将DataFrame.melt
与np.select
一起使用(以获取积分)和DataFrame.pivot_table
将框架恢复为原始形状:
df = df.join(df.reset_index()
.melt(['index','Round','Result'],value_name = 'Team',var_name = 'H/A')
.sort_values('index')
.assign(Points = lambda x:np.select([ x['Result'].eq('D'),
x['H/A'].eq('HomeTeam')
.mul(x['Result'].eq('HT'))|
x['H/A'].eq('AwayTeam')
.mul(x['Result'].eq('AT'))],
[1,3],
default = 0))
.assign(CumPoints = lambda x: x.groupby('Team')
.Points
.cumsum()
.groupby(x['Team'])
.shift(fill_value = 0))
.pivot_table(index = 'index',
columns = 'H/A',
values = 'CumPoints'
fill_value = 0)
.sort_index(axis = 1,ascending = False)
.add_prefix('CumulativePoints')
)
print(df)
输出
HomeTeam AwayTeam Result Round CumulativePointsHomeTeam CumulativePointsAwayTeam
0 A C HT 1 0 0
1 B D AT 1 0 0
2 B A HT 2 0 3
3 D C HT 2 3 0
4 C B D 3 0 3
5 A D AT 3 3 6
6 C A D 4 1 3
7 D B AT 4 9 4
答案 1 :(得分:1)
将此添加到您的代码中:
cpts ={'A':0,'B':0,'C':0,'D':0}
cpts_ht = []
cpts_at = []
for i in range(len(df.Result)):
cpts_ht.append(cpts[df.HomeTeam[i]])
cpts_at.append(cpts[df.AwayTeam[i]])
if df.Result[i]=='HT':
cpts[df.HomeTeam[i]]+=3
elif df.Result[i]=='AT':
cpts[df.AwayTeam[i]]+=3
else:
cpts[df.HomeTeam[i]]+=1
cpts[df.AwayTeam[i]]+=1
df['cummulative_home'] = cpts_ht
df['cummulative_away'] = cpts_at
print(df)
输出:
HomeTeam AwayTeam Result Round cummulative_home cummulative_away
0 A C HT 1 0 0
1 B D AT 1 0 0
2 B A HT 2 0 3
3 D C HT 2 3 0
4 C B D 3 0 3
5 A D AT 3 3 6
6 C A D 4 1 3
7 D B AT 4 9 4