检查输入时出错:预期embedding_1输入具有形状但形状正常

时间:2020-01-17 01:50:51

标签: python tensorflow machine-learning keras

我已经成功创建了Keras顺序模型并对其进行了一段时间的训练。现在,我正在尝试做出一些预测,但是即使使用与培训阶段所使用的数据相同的方法,也无法成功。

我收到此错误:{ValueError}检查输入时出错:预期embedding_1_input具有形状(2139,)但形状为(1,)的数组

但是,在检查我要使用的输入时,它显示为(2139,)。我想知道是否有人知道这可能是什么

    df = pd.read_csv('../../data/parsed-data/data.csv')

    df = ModelUtil().remove_entries_based_on_threshold(df, 'Author', 2)

    #show_column_distribution(df, 'Author')

    y = df.pop('Author')

    le = LabelEncoder()
    le.fit(y)
    encoded_Y = le.transform(y)

    tokenizer, padded_sentences, max_sentence_len \
        = PortugueseTextualProcessing().convert_corpus_to_number(df)

    ModelUtil().save_tokenizer(tokenizer)
    vocab_len = len(tokenizer.word_index) + 1

    glove_embedding = PortugueseTextualProcessing().load_vector(tokenizer)

    embedded_matrix = PortugueseTextualProcessing().build_embedding_matrix(glove_embedding, vocab_len, tokenizer)


    cv_scores = []
    kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=7)
    models = []



    nn = NeuralNetwork()
    nn.build_baseline_model(embedded_matrix, max_sentence_len, vocab_len, len(np_utils.to_categorical(encoded_Y)[0]))

    # Separate some validation samples
    val_data, X, Y = ModelUtil().extract_validation_data(padded_sentences, encoded_Y)

    for train_index, test_index in kfold.split(X, Y):
        # convert integers to dummy variables (i.e. one hot encoded)
        dummy_y = np_utils.to_categorical(Y)
        print("TRAIN:", train_index, "TEST:", test_index)
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = dummy_y[train_index], dummy_y[test_index]
        nn.train(X_train, y_train, 100)

        scores = nn.evaluate_model(X_test, y_test)
        cv_scores.append(scores[1] * 100)
        models.append(nn)

    print("%.2f%% (+/- %.2f%%)" % (np.mean(cv_scores), np.std(cv_scores)))
    best_model = models[cv_scores.index(max(cv_scores))]
    best_model.save_model()
    best_model.predict_entries(X[0]) 

执行预测和模型创建的方法

    def build_baseline_model(self, emd_matrix, long_sent_size, vocab_len, number_of_classes):
        self.model = Sequential()
        embedding_layer = Embedding(vocab_len, 100, weights=[emd_matrix], input_length=long_sent_size,
                                        trainable=False)
        self.model.add(embedding_layer)
        self.model.add(Dropout(0.2))
        self.model.add(Flatten())

        # softmax performing better than relu
        self.model.add(Dense(number_of_classes, activation='softmax'))

        self.model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
        return self.model    

def predict_entries(self, entry):
        predictions = self.model.predict_classes(entry)
        # show the inputs and predicted outputs
        print("X=%s, Predicted=%s" % (entry, predictions[0]))
        return predictions

X [0] .shape计算为 :(2139,)

1 个答案:

答案 0 :(得分:1)

在这种情况下,您应该应用整形,以便获得具有包含句子的唯一元素的数组。

X_reshape = X [0] .reshape(1,2139)

best_model.predict_entries(X_reshape)