我正在尝试使用自带的CNN(VGG16),但始终出现以下错误:
ValueError: Error when checking input: expected input_2 to have shape (224, 224, 3) but got array with shape (244, 244, 3)
这是我的完整代码:
import numpy as np
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Activation
from keras.layers.core import Dense, Flatten
from keras.optimizers import Adam
from keras.metrics import categorical_crossentropy
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import *
train_path = "/DATA/train"
valid_path = "/DATA/valid"
test_path = "/DATA/test"
#creating the training, testing, and validation sets
trainBatches = ImageDataGenerator().flow_from_directory(train_path, target_size=(244,244), classes=['classU', 'classH'], batch_size=20)
valBatches = ImageDataGenerator().flow_from_directory(valid_path, target_size=(244,244), classes=['classU', 'classH'], batch_size=2)
testBatches = ImageDataGenerator().flow_from_directory(test_path, target_size=(244,244), classes=['classU', 'classH'], batch_size=2)
#loading the model & removing the top layer
model = Sequential()
for layer in vgg16_model.layers[:-1]:
model.add(layer)
#Fixing the weights
for layer in model.layers:
layer.trainable = False
#adding the new classier
model.add(Dense(2, activation = 'softmax'))
model.compile(Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(trainBatches, steps_per_epoch=89, validation_data=valBatches, validation_steps=11, epochs=5, verbose=2)
但是我不知道我得到了什么错误。我认为ImageDataGenerator()将以正确的尺寸处理数据/批处理。我缺少什么?
答案 0 :(得分:0)
在这种情况下,VGG模型期望图像为(224, 224)
,而您的图像生成器目标为(244, 244)
,因此您的输入形状不匹配。您应该将目标尺寸调整为预期的形状。 documentation详细说明了预期的输入,并且还有一个选项include_top
,它将为您删除最后一层,因此您不必手动进行操作。