但是我是新手。请告诉我如何在图像下显示精度值。
答案 0 :(得分:0)
该示例中使用的模型返回形状(批大小,类)的对数张量。假设您所说的“准确性值”是具有最大概率的类别的预测概率,那么您需要做的是首先通过获取模型输出的SoftMax来计算您的概率,从而给出每个图像的预测概率在您的批次中。他们的visualize_model函数看起来类似于以下内容,尽管我尚未对其进行测试。
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_handeled = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
probabilities = nn.functional.softmax(outputs, dim=-1) # compute probabilities
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_handeled += 1
ax = plt.subplot(num_images//2, 2, images_handeled)
ax.axis('off')
ax.set_title('predicted: {}, probability: {}'.format(class_names[preds[j]], probabilities[preds[j]])) # add predicted class probability
imshow(inputs.cpu().data[j])
if images_handeled == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
或者您是说总体分类的准确性?