我正在尝试对Caltech101数据集进行一些图像分类。我在Keras中使用了一些预训练的模型。我在训练集上使用了一些增强功能:
chown <apache-user>:<apache-user> wp-content
我还使用了一些早期停止功能(100个周期后停止):
train_datagen = keras.preprocessing.image.ImageDataGenerator(
rescale=1./255, rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.01,
zoom_range=[0.9, 1.25],
horizontal_flip=False,
vertical_flip=False,
fill_mode='reflect',
data_format='channels_last',
brightness_range=[0.5, 1.5])
validation_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train1_dir, # Source directory for the training images
target_size=(image_size, image_size),
batch_size=batch_size)
validation_generator = validation_datagen.flow_from_directory(
validation_dir, # Source directory for the validation images
target_size=(image_size, image_size),
batch_size=batch_size)
首先,我训练最后一层:
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=100)
mc = ModelCheckpoint('best_model_%s_%s.h5' % (dataset_name, model_name), monitor='val_acc', mode='max', verbose=1, save_best_only=True)
callbacks = [es, mc]
然后,按照Keras教程,训练前面的层:
base_model.trainable = False
model = tf.keras.Sequential([
base_model,
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),
loss='categorical_crossentropy',
metrics=['accuracy'])
epochs = 10000
steps_per_epoch = train_generator.n // batch_size
validation_steps = validation_generator.n // batch_size
history = model.fit_generator(train_generator,
steps_per_epoch = steps_per_epoch,
epochs=epochs,
workers=4,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks)
最后,模型完成训练后,我将在另一个测试集上对其进行手动测试
# After top classifier is trained, we finetune the layers of the network
base_model.trainable = True
# Let's take a look to see how many layers are in the base model
print("Number of layers in the base model: ", len(base_model.layers))
# Fine tune from this layer onwards
fine_tune_at = 1
# Freeze all the layers before the `fine_tune_at` layer
for layer in base_model.layers[:fine_tune_at]:
layer.trainable = False
model.compile(optimizer = tf.keras.optimizers.RMSprop(lr=2e-5),
loss='categorical_crossentropy',
metrics=['accuracy'])
epochs = 10000
history_fine = model.fit_generator(train_generator,
steps_per_epoch = steps_per_epoch,
epochs=epochs,
workers=4,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks
)
我必须这样做,因为该库不会输出F1分数。但是我发现val_acc上升得很高(大约0.8),但是在训练后的测试阶段,准确性非常低(我认为大约是0.1)。我不明白为什么会这样。请帮助我,非常感谢。
更新15/10/2019:我试图在网络顶部训练线性svm,而不进行任何微调,并且使用VGG16(带有RMSProp优化器)在Caltech101上获得了70%的精度。但是我不确定这是否是最佳选择。
更新2:我在我的自定义数据集上使用了Daniel Moller建议的预处理部分(大约450张图像,“打开”为283类,“关闭”为203类,使用耐心= 100的早期停止时得到了这种准确性和损失) ,只需使用以下内容训练最后一层:
label_list = train_generator.class_indices
numeric_to_class = {}
for key, val in label_list.items():
numeric_to_class[val] = key
total_num_images = 0
acc_num_images = 0
with open("%s_prediction_%s.txt" % (dataset_name, model_name), "wt") as fid:
fid.write("Label list:\n")
for label in label_list:
fid.write("%s," % label)
fid.write("\n")
fid.write("true_class,predicted_class\n")
fid.write("--------------------------\n")
for label in label_list:
testing_dir = os.path.join(test_dir, label)
for img_file in os.listdir(testing_dir):
img = cv2.imread(os.path.join(testing_dir, img_file))
img_resized = cv2.resize(img, (image_size, image_size), interpolation = cv2.INTER_AREA)
img1 = np.reshape(img_resized, (1, img_resized.shape[0], img_resized.shape[1], img_resized.shape[2]))
pred_class_num = model.predict_classes(img1)
pred_class_num = pred_class_num[0]
true_class_num = label_list[label]
predicted_label = numeric_to_class[pred_class_num]
fid.write("%s,%s\n" % (label, predicted_label))
if predicted_label == label:
acc_num_images += 1
total_num_images += 1
acc = acc_num_images / (total_num_images * 1.0)
更新3:我也尝试使用VGG16中的最后一个完全连接的层,并在每个层之后添加了丢失层,其丢失率(该速率设置为0) 60%,耐心= 10(用于提前停止):
model = tf.keras.Sequential([
base_model,
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dense(num_classes, activation='softmax')
])
答案 0 :(得分:1)
在以下位置打开图像进行预测时,您忘了重新缩放1/255.
:
.....
img = cv2.imread(os.path.join(testing_dir, img_file))
img_resized = cv2.resize(img, (image_size, image_size), interpolation = cv2.INTER_AREA)
img1 = np.reshape(img_resized,
(1, img_resized.shape[0], img_resized.shape[1], img_resized.shape[2]))
#you will probably need:
img1 = img1/255.
pred_class_num = model.predict_classes(img1)
...........
还请注意,cv2
将以BGR
格式打开图像,而Keras可能会以RGB
打开图像。
示例:
keras_train = train_generator[0][0] #first image from first batch
keras_val = validation_generator[0][0]
img = cv2.imread(os.path.join(testing_dir, img_file))
img_resized = cv2.resize(img, (image_size, image_size), interpolation = cv2.INTER_AREA)
img1 = np.reshape(img_resized,
(1, img_resized.shape[0], img_resized.shape[1], img_resized.shape[2]))
your_image = img1[0]/255. #first image from your batch rescaled
用matplotlib
绘制这些图像。
还要确保它们具有相同的范围:
plt.imshow(keras_train)
plt.plot()
plt.imshow(keras_val)
plt.plot()
plt.imshow(your_image)
plt.plot()
print(keras_train.max(), keras_val.max(), img1.max())
您可能需要使用np.flip(images, axis=-1)
将BGR转换为RGB。
如果从keras导入基本模型,则应从同一模块导入预处理,以及使用Keras图像打开器。这样可以消除可能的不匹配:
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image #use this instead of cv2
from keras.applications.resnet50 import preprocess_input #use this in the generators
在两个生成器中,都使用预处理功能:
#no rescale, only preprocessing function
train_datagen = keras.preprocessing.image.ImageDataGenerator(
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.01,
zoom_range=[0.9, 1.25],
horizontal_flip=False,
vertical_flip=False,
fill_mode='reflect',
data_format='channels_last',
brightness_range=[0.5, 1.5],
preprocessing_function=preprocess_input)
validation_datagen = keras.preprocessing.image.ImageDataGenerator(
preprocessing_function=preprocess_input)
加载和预处理图像以进行预测:
img = image.load_img(img_path, target_size=(image_size,image_size))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
更多内容:https://keras.io/applications/
但是可能还有其他一些事情,例如:
ModelCheckpoint
保存的最佳模型BatchNormalization
层? -冻结批处理规范化层时,它将保持moving_mean
和moving_variance
不变,但是这些值是用不同的数据训练的。如果您的数据没有相同的均值和方差,则模型可以很好地训练,但是验证将是一场灾难
BatchNormalization
层(在各层上重复并仅冻结其他类型)