搜索二维排序数组中的元素

时间:2020-01-03 18:55:31

标签: java multidimensional-array time-complexity binary-search

我不得不编写一个代码(作为练习),该代码接收2D(正方形)按行和逐行排序的数组和一个元素,如果数组中存在该元素,则返回true。

当我听到“已排序”时,想到的第一件事是二进制搜索,但后来我意识到每行的最后一个元素不一定小于下一行的第一个元素。

所以,我发现最好的复杂度是O(n),并编写了以下代码:

 public static boolean findN(int[][] a, int x) {
    if (a.length == 0 || a[0].length == 0 || x > a[a.length - 1][a[0].length - 1] || x < a[0][0]) {
        return false;
    }
    int LastRow = a.length - 1, Lastcol = a[0].length - 1, row = 0, col = 0;

    while (row <= LastRow) {
        if (a[row][col] == x) {
            return true;
        } else if (col < Lastcol) {
            col++;
        } else {
            col = 0;
            row++;
        }
    }
    return false;
}

数组示例:

int [] [] arr = {{1,2,7,30}
                        {2,4,18,50}
                        {3,6,19,90}
                        {4,7,20,91}}
  • 意识到最好的复杂度是O(n)之后,我用Google搜索了 问题,所以我几乎可以肯定我是对的(尽管有些人 声称他们可以在O(log(n)))中做到这一点,但是我真的吗?
  • 欢迎其他任何想法和改进,提前谢谢大家!

1 个答案:

答案 0 :(得分:0)

几个月前,我遇到了类似的问题,这是我发现的代码可以在O(logN + logM)中使用[假定数组按行和列进行排序]。

[...],但是我意识到每行的最后一个元素不一定小于下一行的第一个元素。-在这种情况下,您无法获得O( logn)的复杂性。

简单的二进制搜索:

static void binarySearch(int mat[][], int i, int j_low, int j_high, int x) { 
    while (j_low <= j_high) { 
        int j_mid = (j_low + j_high) / 2; 

        // Element found 
        if (mat[i][j_mid] == x) { 
            System.out.println ( "Found at (" + i  + ", " + j_mid +")"); 
            return; 
        } 

        else if (mat[i][j_mid] > x) 
            j_high = j_mid - 1; 

        else
            j_low = j_mid + 1; 
    } 

    System.out.println ( "Element no found"); 
} 

核心逻辑:

static void sortedMatrixSearch(int mat[][], int n, int m, int x) { 
    // Single row matrix 
    if (n == 1) { 
        binarySearch(mat, 0, 0, m - 1, x); 
        return; 
    } 

    // Do binary search in middle column. 
    // Condition to terminate the loop when the 
    // 2 desired rows are found 
    int i_low = 0; 
    int i_high = n - 1; 
    int j_mid = m / 2; 
    while ((i_low + 1) < i_high) { 
        int i_mid = (i_low + i_high) / 2; 

        // element found 
        if (mat[i_mid][j_mid] == x) { 
            System.out.println ( "Found at (" + i_mid +", " + j_mid +")"); 
            return; 
        } 

        else if (mat[i_mid][j_mid] > x) 
            i_high = i_mid; 

        else
            i_low = i_mid; 
    } 

    // If element is present on  
    // the mid of the two rows 
    if (mat[i_low][j_mid] == x) 
        System.out.println ( "Found at (" + i_low + "," + j_mid +")"); 
    else if (mat[i_low + 1][j_mid] == x) 
        System.out.println ( "Found at (" + (i_low + 1)  + ", " + j_mid +")"); 

    // Ssearch element on 1st half of 1st row 
    else if (x <= mat[i_low][j_mid - 1]) 
        binarySearch(mat, i_low, 0, j_mid - 1, x); 

    // Search element on 2nd half of 1st row 
    else if (x >= mat[i_low][j_mid + 1] && x <= mat[i_low][m - 1]) 
    binarySearch(mat, i_low, j_mid + 1, m - 1, x); 

    // Search element on 1st half of 2nd row 
    else if (x <= mat[i_low + 1][j_mid - 1]) 
        binarySearch(mat, i_low + 1, 0, j_mid - 1, x); 

    // search element on 2nd half of 2nd row 
    else
        binarySearch(mat, i_low + 1, j_mid + 1, m - 1, x); 
} 

驱动程序方法:

public static void main (String[] args) { 
    int n = 4, m = 5, x = 8; 
    int mat[][] = {{0, 6, 8, 9, 11}, 
                   {20, 22, 28, 29, 31}, 
                   {36, 38, 50, 61, 63}, 
                   {64, 66, 100, 122, 128}}; 

    sortedMatrixSearch(mat, n, m, x); 
} 

希望这会有所帮助。祝好运。