2个熊猫df列之间的余弦相似度以获取余弦距离

时间:2019-12-31 23:32:47

标签: python pandas scikit-learn cosine-similarity

我有一个数据框,如下所示:

vector_a            vector_b
[1,2,3]             [2,5,6]
[0,2,1]             [2,9,1]
[4,7,1]             [1,7,4]

我想在vector_a和vector_b列之间进行sklearn的cosine_similarity,以在同一数据帧中获得一个名为“ cosine_distance”的新列。请注意,vector_a和vector_b是df的熊猫list列。

这是我尝试过的:

df['vector_a'] = df['vector_a'].apply(lambda x: np.asarray(x))
df['vector_b'] = df['vector_b'].apply(lambda x: np.asarray(x))
df['cosine_distance'] = cosine_similarity(df['vector_a'].apply(lambda x: np.transpose(x)), 
                                          df['vector_b'].apply(lambda x: np.transpose(x)))

我得到了这个错误:

---> 58         df['cosine_distance'] = cosine_similarity(df['vector_a'].apply(lambda x: np.transpose(x)), df['vector_b'].apply(lambda x: np.transpose(x)))

~\Anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in cosine_similarity(X, Y, dense_output)
   1025     # to avoid recursive import
   1026 
-> 1027     X, Y = check_pairwise_arrays(X, Y)
   1028 
   1029     X_normalized = normalize(X, copy=True)

~\Anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in check_pairwise_arrays(X, Y, precomputed, dtype)
    110     else:
    111         X = check_array(X, accept_sparse='csr', dtype=dtype,
--> 112                         estimator=estimator)
    113         Y = check_array(Y, accept_sparse='csr', dtype=dtype,
    114                         estimator=estimator)

~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    494             try:
    495                 warnings.simplefilter('error', ComplexWarning)
--> 496                 array = np.asarray(array, dtype=dtype, order=order)
    497             except ComplexWarning:
    498                 raise ValueError("Complex data not supported\n"

~\Anaconda3\lib\site-packages\numpy\core\numeric.py in asarray(a, dtype, order)
    536 
    537     """
--> 538     return array(a, dtype, copy=False, order=order)
    539 
    540 

ValueError: setting an array element with a sequence.

提前谢谢!

1 个答案:

答案 0 :(得分:2)

TLDR:

df['cosine_similarity'] = df.apply(
    lambda row: cosine_similarity([row['vector_a']], [row['vector_b']])[0][0],
    axis=1)

说明:

  • cosine_similarity需要二维np.array或列表列表。它不知道如何解释pd。一系列列表。但是,即使我们确实将其转换为列表列表,也会出现下一个问题:
  • cosine_similarity返回所有与所有相似度。因此,让我们限于成对比较,人为地创建第二维(请注意[row['vector_a']], [row['vector_b']]中的额外方括号),然后获取1x1数组的唯一元素(cosine_similarity(...)[0][0]末尾为零)