我正在构建具有多个输入(实际上是3个)的Keras分类模型,以预测单个输出。具体来说,我的3个输入是:
输出:
Python代码(创建多个输入keras)
instance = kwargs['instance']
if instance.id is not None:
current_image = Image.objects.filter(id=instance.id)[0]
print(current_image.image.path) ### WORKS FINE
os.remove(current_image.image.path) ### WORKS FINE
模型的结构
我的问题:
在一些训练数据上成功拟合并训练了模型后,我想提取该模型的嵌入物以供以后使用。在使用多输入keras模型之前,我的主要方法是训练3种不同的keras模型并提取3个形状为100的不同嵌入层。现在,我有了多输入keras模型,我想提取级联的嵌入层< / strong>,并带有输出形状(无,300)。
尽管如此,当我尝试使用此python命令时:
def kera_multy_classification_model():
sentenceLength_actors = 15
vocab_size_frequent_words_actors = 20001
sentenceLength_plot = 23
vocab_size_frequent_words_plot = 17501
sentenceLength_features = 69
vocab_size_frequent_words_features = 20001
model = keras.Sequential(name='Multy-Input Keras Classification model')
actors = keras.Input(shape=(sentenceLength_actors,), name='actors_input')
plot = keras.Input(shape=(sentenceLength_plot,), name='plot_input')
features = keras.Input(shape=(sentenceLength_features,), name='features_input')
emb1 = layers.Embedding(input_dim = vocab_size_frequent_words_actors + 1,
# based on keras documentation input_dim: int > 0. Size of the vocabulary, i.e. maximum integer index + 1.
output_dim = Keras_Configurations_model1.EMB_DIMENSIONS,
# int >= 0. Dimension of the dense embedding
embeddings_initializer = 'uniform',
# Initializer for the embeddings matrix.
mask_zero = False,
input_length = sentenceLength_actors,
name="actors_embedding_layer")(actors)
encoded_layer1 = layers.LSTM(100)(emb1)
emb2 = layers.Embedding(input_dim = vocab_size_frequent_words_plot + 1,
output_dim = Keras_Configurations_model2.EMB_DIMENSIONS,
embeddings_initializer = 'uniform',
mask_zero = False,
input_length = sentenceLength_plot,
name="plot_embedding_layer")(plot)
encoded_layer2 = layers.LSTM(100)(emb2)
emb3 = layers.Embedding(input_dim = vocab_size_frequent_words_features + 1,
output_dim = Keras_Configurations_model3.EMB_DIMENSIONS,
embeddings_initializer = 'uniform',
mask_zero = False,
input_length = sentenceLength_features,
name="features_embedding_layer")(features)
encoded_layer3 = layers.LSTM(100)(emb3)
merged = layers.concatenate([encoded_layer1, encoded_layer2, encoded_layer3])
layer_1 = layers.Dense(Keras_Configurations_model1.BATCH_SIZE, activation='relu')(merged)
output_layer = layers.Dense(Keras_Configurations_model1.TARGET_LABELS, activation='softmax')(layer_1)
model = keras.Model(inputs=[actors, plot, features], outputs=output_layer)
print(model.output_shape)
print(model.summary())
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
或
embeddings = model_4.layers[9].get_weights()
print(embeddings)
我得到一个空列表(第一个代码示例)或一个 IndenError:列表索引超出范围(第二个代码示例)。
在此问题上,谢谢您的任何建议或帮助。请随时在评论中询问我可能错过的任何其他信息,以使此问题更完整。
注意:Python代码和模型的结构也已提供给此先前回答的question
答案 0 :(得分:1)
连接层没有任何权重(如您从模型摘要中看到的那样,它没有可训练的参数),因此get_weights()
输出为空。串联是一项操作。
对于您的情况,可以在训练后获得各个嵌入层的权重。
model.layers[3].get_weights() # similarly for layer 4 and 5
或者,如果要将嵌入存储在(无,300)中,则可以使用numpy连接权重。
out_concat = np.concatenate([mdoel.layers[3].get_weights()[0], mdoel.layers[4].get_weights()[0], mdoel.layers[5].get_weights()[0]], axis=-1)
尽管可以获得连接层的输出张量:
out_tensor = model.layers[9].output
# <tf.Tensor 'concatenate_3_1/concat:0' shape=(?, 300) dtype=float32>