假设我有一张桌子,看起来像这样-
Function GetCombinations(ByVal depth As Integer, ByVal values As String()) As IEnumerable(Of String)
If depth > values.Count + 1 Then Return New List(Of String)
Dim result = New List(Of String)
For i = 0 To depth - 1
For y = 0 To values.Count - 1
If i = 0 Then
result.Add(values(y))
Else
result.Add(values(i - 1) + values(y))
End If
Next
Next
Return result
End Function
Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
Dim data_array As String() = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14",
"15"}
Dim result = GetCombinations(2, data_array)
Dim resultx As String = String.Join(",", result)
TxtListScanTxt.AppendText(resultx)
End Sub
我想将其转换为一个热向量,使得
Movie Action Scifi Drama Romance
Abc True False False False
Def False False True False
Ghi False False False True
众所周知,只有一列可以为True。
在python中是否有一种有效的方法?
答案 0 :(得分:0)
您可以使用numpy
进行此操作。
import numpy as np
Abc = np.array([True,False,False,False])
Def = np.array([False,False,True,False])
Ghi = np.array([False,False,False,True])
movies = np.array([Abc, Def, Ghi])
print("Input:")
print(movies)
#casting from boolean to integer
result = np.array(movies, dtype=np.int)
print("Output:")
print(result)
答案 1 :(得分:0)
好的,所以我找到了一种方法来处理更大的数据集。
df['genre'] = pd.Series(np.random.randn(size), index=df.index)
for i in range(len(df)):
if df.iloc[i]['action'] == True:
df.at[i, 'genre'] = 0
elif df.iloc[i]['scifi'] == True:
df.at[i, 'genre'] = 1
elif df.iloc[i]['drama'] == True:
df.at[i, 'genre'] = 2
elif df.iloc[i]['romance'] == True:
df.at[i, 'genre'] = 3
因此,通过执行此操作,我们将在数据框中创建一个名为“ genre”的新列,并为其提供适当的值。之后,
y = df['genre']
import tensorflow as tf
y_categorical = tf.keras.utils.to_categorical(y)
这将完成将其转换为一个热向量的工作。