我想创建一个称为Activity
的相当大且可复制的数据集,以便在StackOverFlow上提出一个问题。我的数据框将包含以下变量:
DateTime
:日期和时间(以毫秒为单位),数据速率为每秒11个值,即每秒11行。ID
:指个人。我想创建一个数据集,其中包含3个人(A
,B
和C
)的数据。x
:随机数据,范围为-1至+1。y
:随机数据,范围为-1至+1。z
:从-1到+1的随机数据。我最初使用此代码:
set.seed(100)
fmt <- "%Y-%m-%d %H:%M:%OS"
DateTime = seq(from=as.POSIXct("2017-08-05 14:03:55.300", format=fmt, tz="UTC"), by=1/11, length.out=67)
ID = rep("A", each=67)
x= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
y= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
z= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
Activity1<- data.frame(DateTime,ID, x, y, z)
DateTime = seq(from=as.POSIXct("2017-08-05 16:18:12.100", format=fmt, tz="UTC"),by=1/11, length.out=67)
ID = rep("B", each=67)
x= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
y= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
z= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
Activity2<- data.frame(DateTime,ID, x, y, z)
DateTime = seq(from=as.POSIXct("2017-08-05 20:34:31.540", format=fmt, tz="UTC"),by=1/11, length.out=67)
ID = rep("C", each=67)
x= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
y= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
z= sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
Activity3<- data.frame(DateTime,ID, x, y, z)
Activity<- rbind(Activity1,Activity2,Activity3)
head(Activity)
DateTime ID x y z
1 2017-08-05 14:03:55.29999 A 0.01 0.82 -0.56
2 2017-08-05 14:03:55.39090 A 0.11 0.74 0.07
3 2017-08-05 14:03:55.48182 A 0.50 0.95 -0.64
4 2017-08-05 14:03:55.57273 A 0.97 -0.89 0.95
5 2017-08-05 14:03:55.66364 A -0.97 0.78 -0.01
6 2017-08-05 14:03:55.75454 A -0.46 0.20 1.00
如何用更少的代码创建相同的数据框?我需要在StackOverFlow的另一篇文章中创建一个可重现的数据框,其他用户告诉我,我应该使用更少的代码来创建示例。
答案 0 :(得分:1)
有多种方法可以达到相同的结果。这是我将使用首选工具进行的操作:
library(data.table)
# define parameters to control the process
base_data <- fread("DateTime, ID, N
2017-08-05 14:03:55.300, A, 67
2017-08-05 16:18:12.100, B, 67
2017-08-05 20:34:31.540, C, 67")[
, DateTime := lubridate::ymd_hms(DateTime)]
# expand sequences rowwise
Activity <- base_data[, .(DateTime = seq(from = DateTime, by = 1/11, length.out = N)),
by = .(rn = seq(nrow(base_data)), ID)][
, rn := NULL][]
# create x, y, z columns by sampling
cols <- c("x", "y", "z")
set.seed(100)
Activity[, (cols) := replicate(length(cols), round(runif(.N, -1, +1), 2), simplify = FALSE)]
Activity
ID DateTime x y z 1: A 2017-08-05 14:03:55 -0.38 0.91 -0.28 2: A 2017-08-05 14:03:55 -0.48 0.83 -0.12 3: A 2017-08-05 14:03:55 0.10 0.65 0.61 4: A 2017-08-05 14:03:55 -0.89 -0.36 0.04 5: A 2017-08-05 14:03:55 -0.06 0.76 0.39 --- 197: C 2017-08-05 20:34:37 -0.76 -0.52 -0.81 198: C 2017-08-05 20:34:37 0.20 0.44 -0.59 199: C 2017-08-05 20:34:37 -0.76 -0.41 -0.94 200: C 2017-08-05 20:34:37 0.58 0.02 0.16 201: C 2017-08-05 20:34:37 -0.26 -0.44 -0.69
默认情况下不打印秒的分数,但可以通过以下方式验证1/11秒的分数
head(diff(Activity$DateTime))
Time differences in secs [1] 0.09090900 0.09090924 0.09090900 0.09090900 0.09090924 0.09090900
由于操作员未要求完全按照给定的种子值重现他的结果,所以我替换了
sample(seq(from = -1, to = 1, by = 0.01), size = 67, replace = TRUE)
作者
round(runif(.N, -1, +1), 2)
如果必须使用sample()
,可以通过
seq()
部分
sample((-100:100)/100, .N, replace = TRUE)
使用data.table
chaining ,代码可以更简洁地编写为
library(data.table)
cols <- c("x", "y", "z")
set.seed(100)
Activity <- fread("DateTime, ID, N
2017-08-05 14:03:55.300, A, 67
2017-08-05 16:18:12.100, B, 67
2017-08-05 20:34:31.540, C, 67")[
, DateTime := lubridate::ymd_hms(DateTime)][
, .(DateTime = seq(from = DateTime, by = 1/11, length.out = N)),
by = .(rn = seq(nrow(base_data)), ID)][
, (cols) := replicate(length(cols), round(runif(.N, -1, +1), 2), simplify = FALSE)][
, rn := NULL][]