当我在SQLite中使用LIKE
运算符时,它比我使用=
时要慢得多。
使用=
运算符大约需要14毫秒,但是当我使用LIKE
时,大约需要440毫秒。我正在用DB Browser for SQLite
进行测试。这是可以快速运行的查询:
SELECT re.ENTRY_ID,
GROUP_CONCAT(re.READING_ELEMENT, '§') AS read_element,
GROUP_CONCAT(re.FURIGANA_BOTTOM, '§') AS furigana_bottom,
GROUP_CONCAT(re.FURIGANA_TOP, '§') AS furigana_top,
GROUP_CONCAT(re.NO_KANJI, '§') AS no_kanji,
GROUP_CONCAT(re.READING_COMMONNESS, '§') AS read_commonness,
GROUP_CONCAT(re.READING_RELATION, '§') AS read_rel,
GROUP_CONCAT(se.SENSE_ID, '§') AS sense_id,
GROUP_CONCAT(se.GLOSS, '§') AS gloss,
GROUP_CONCAT(se.POS, '§') AS pos,
GROUP_CONCAT(se.FIELD, '§') AS field,
GROUP_CONCAT(se.DIALECT, '§') AS dialect,
GROUP_CONCAT(se.INFORMATION, '§') AS info
FROM Jmdict_Reading_Element AS re LEFT JOIN
Jmdict_Sense_Element AS
se ON re.ENTRY_ID = se.ENTRY_ID
WHERE re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Reading_Element WHERE READING_ELEMENT = 'example') OR
re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Sense_Element WHERE GLOSS = 'example')
GROUP BY re.ENTRY_ID
当我改变时,速度变慢
WHERE re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Reading_Element WHERE READING_ELEMENT = 'example') OR
re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Sense_Element WHERE GLOSS = 'example')
到
WHERE re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Reading_Element WHERE READING_ELEMENT LIKE 'example') OR
re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Sense_Element WHERE GLOSS LIKE 'example')
我需要这样做,以便可以使用通配符,例如
WHERE re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Reading_Element WHERE READING_ELEMENT LIKE 'example%') OR
re.ENTRY_ID IN (SELECT ENTRY_ID FROM Jmdict_Sense_Element WHERE GLOSS LIKE 'example%')
这里是数据库本身的链接: https://www.mediafire.com/file/hyuymc84022gzq7/dictionary.db/file
谢谢
答案 0 :(得分:3)
尝试在正在使用的列上放置全文索引。
创建目录
USE {yourDB}
GO
CREATE FULLTEXT CATALOG {catalogName}
WITH ACCENT_SENSITIVITY = OFF
创建索引
USE {yourDB}
GO
CREATE FULLTEXT INDEX ON {someTable} ({col1}, {col2})
ON catalogName
注意 这更加方便,但是请查看您的排序规则是否区分大小写,例如“ a” =“ A”。通常,排序规则将具有例如ci_utf8(ci =不区分大小写)。我这样做是为了给用户和程序员带来方便。
答案 1 :(得分:0)
我想知道使用HAVING
是否会加快查询速度:
SELECT re.ENTRY_ID,
GROUP_CONCAT(re.READING_ELEMENT, '§') AS read_element,
GROUP_CONCAT(re.FURIGANA_BOTTOM, '§') AS furigana_bottom,
GROUP_CONCAT(re.FURIGANA_TOP, '§') AS furigana_top,
GROUP_CONCAT(re.NO_KANJI, '§') AS no_kanji,
GROUP_CONCAT(re.READING_COMMONNESS, '§') AS read_commonness,
GROUP_CONCAT(re.READING_RELATION, '§') AS read_rel,
GROUP_CONCAT(se.SENSE_ID, '§') AS sense_id,
GROUP_CONCAT(se.GLOSS, '§') AS gloss,
GROUP_CONCAT(se.POS, '§') AS pos,
GROUP_CONCAT(se.FIELD, '§') AS field,
GROUP_CONCAT(se.DIALECT, '§') AS dialect,
GROUP_CONCAT(se.INFORMATION, '§') AS info
FROM Jmdict_Reading_Element re LEFT JOIN
Jmdict_Sense_Element se
ON re.ENTRY_ID = se.ENTRY_ID
GROUP BY re.ENTRY_ID
HAVING SUM(CASE WHEN re.READING_ELEMENT = 'example' THEN 1 ELSE 0 END) > 0 OR
SUM(CASE WHEN se.GLOSS = 'example' THEN 1 ELSE 0 END) > 0);
答案 2 :(得分:0)
在Win 10上将数据库浏览器用于sqlite。
LIKE "example%"
)在1025毫秒内返回33行像这样创建fts4表:
create virtual table jre_fts using FTS4(entry_id,reading_element);
insert into jre_fts select entry_id, reading_element from Jmdict_Reading_Element;
create virtual table jse_fts using FTS4(entry_id,gloss);
insert into jse_fts select entry_id, gloss from Jmdict_Sense_Element;
花费了7390毫秒,数据库从70,296KB增长到110,708KB。
像这样修改WHERE:
WHERE re.ENTRY_ID IN (SELECT ENTRY_ID FROM jre_fts WHERE READING_ELEMENT MATCH '^example') OR
re.ENTRY_ID IN (SELECT ENTRY_ID FROM jse_fts WHERE GLOSS MATCH '^example')
查询在60毫秒内返回了33行。
我无法测试或分析FTS在reading_element
列上的工作方式,但是也许这种方法显示出了希望。