我正在尝试找到墨迹斑点角落的准确位置,如下所示:
我的想法是使线条适合边缘,然后找到它们相交的位置。到目前为止,我已经尝试将cv2.approxPolyDP()与epsilon的各种值一起使用来近似边缘,但是这看起来并不可行。我的cv.approxPolyDP代码给出以下结果:
理想情况下,这就是我要生产的(用油漆绘制):
是否存在解决此类问题的CV功能?我曾考虑过在阈值步骤之前使用高斯模糊处理,尽管该方法似乎对于找角并不十分准确。另外,我希望它对旋转的图像具有较强的鲁棒性,因此,在没有其他考虑的情况下,对垂直线和水平线的过滤不一定会起作用。
代码*:
import numpy as np
from PIL import ImageGrab
import cv2
def process_image4(original_image): # Douglas-peucker approximation
# Convert to black and white threshold map
gray = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
(thresh, bw) = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Convert bw image back to colored so that red, green and blue contour lines are visible, draw contours
modified_image = cv2.cvtColor(bw, cv2.COLOR_GRAY2BGR)
contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(modified_image, contours, -1, (255, 0, 0), 3)
# Contour approximation
try: # Just to be sure it doesn't crash while testing!
for cnt in contours:
epsilon = 0.005 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# cv2.drawContours(modified_image, [approx], -1, (0, 0, 255), 3)
except:
pass
return modified_image
def screen_record():
while(True):
screen = np.array(ImageGrab.grab(bbox=(100, 240, 750, 600)))
image = process_image4(screen)
cv2.imshow('window', image)
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
screen_record()
答案 0 :(得分:6)
这是使用阈值+形态学运算的潜在解决方案:
cv2.goodFeaturesToTrack
的Shi-Tomasi拐角检测器进行拐角检测。看看this,了解每个参数这是每个步骤的可视化:
二进制图像->
形态学操作->
近似遮罩->
检测到的角点
这是拐角坐标:
(103, 550)
(1241, 536)
这是其他图像的结果
(558, 949)
(558, 347)
最后是旋转的图像
(201, 99)
(619, 168)
代码
import cv2
import numpy as np
# Load image, bilaterial blur, and Otsu's threshold
image = cv2.imread('1.png')
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.bilateralFilter(gray,9,75,75)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Perform morpholgical operations
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10,10))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel, iterations=1)
# Find distorted rectangle contour and draw onto a mask
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
rect = cv2.minAreaRect(cnts[0])
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(image,[box],0,(36,255,12),4)
cv2.fillPoly(mask, [box], (255,255,255))
# Find corners
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(mask,4,.8,100)
offset = 25
for corner in corners:
x,y = corner.ravel()
cv2.circle(image,(x,y),5,(36,255,12),-1)
x, y = int(x), int(y)
cv2.rectangle(image, (x - offset, y - offset), (x + offset, y + offset), (36,255,12), 3)
print("({}, {})".format(x,y))
cv2.imshow('image', image)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('mask', mask)
cv2.waitKey()
注意:边界框失真的想法来自How to find accurate corner positions of a distorted rectangle from blurry image
中的先前答案答案 1 :(得分:1)