A *算法在Python中找不到目标

时间:2019-12-12 00:36:29

标签: python algorithm path-finding

我还是Python的新手,这是我有关stackoverflow的第一个问题,我在实施A *算法方面遇到了一周的麻烦。

我得到的代码找到了具有直墙的目标,但是正如您将看到的,只要我将墙扩展到起点以下,并且它必须向后或围绕它,它将永远循环。

>

我一直在撞墙,试图修复它,以及如何实现升高代码,以使其停止循环。任何帮助将不胜感激。

我的代码:

class Node:
    """A node class for A* Pathfinding"""

    def __init__(self, parent=None, position=None):
        self.parent = parent
        self.position = position

        self.g = 0
        self.h = 0
        self.f = 0

    def __eq__(self, other):
        return self.position == other.position


def astar(maze, start, end):
    """Returns a list of tuples as a path from the given start to the given end in the given maze"""

    # Create start and end node
    start_node = Node(None, start)
    start_node.g = start_node.h = start_node.f = 0
    end_node = Node(None, end)
    end_node.g = end_node.h = end_node.f = 0

    # Initialize both open and closed list
    open_list = []
    closed_list = []

    # Add the start node
    open_list.append(start_node)

    # Loop until you find the end
    while len(open_list) > 0:

        # Get the current node
        current_node = open_list[0]
        current_index = 0
        for index, item in enumerate(open_list):
            if item.f < current_node.f:
                current_node = item
                current_index = index

        # Pop current off open list, add to closed list
        open_list.pop(current_index)
        closed_list.append(current_node)

        # Found the goal
        if current_node == end_node:
            path = []
            current = current_node
            while current is not None:
                path.append(current.position)
                current = current.parent
            return path[::-1]  # Return reversed path

        # Generate children
        children = []
        for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]:  # Adjacent squares

            # Get node position
            node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])

            # Make sure within range
            if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (
                    len(maze[len(maze) - 1]) - 1) or node_position[1] < 0:
                continue

            # Make sure walkable terrain
            if maze[node_position[0]][node_position[1]] != 0:
                print("node -", node_position[0],node_position[1], "is blocked")
                continue

            # Create new node
            new_node = Node(current_node, node_position)

            # Append
            children.append(new_node)

        # Loop through children
        for child in children:

            # Child is on the closed list
            for closed_child in closed_list:
                if child == closed_child:
                    continue

            # Create the f, g, and h values
            child.g = current_node.g + 1
            child.h = ((child.position[0] - end_node.position[0]) ** 2) + (
                        (child.position[1] - end_node.position[1]) ** 2)
            child.f = child.g + child.h

            # Child is already in the open list
            for open_node in open_list:
                if child == open_node and child.g > open_node.g:
                    continue

            # Add the child to the open list
            open_list.append(child)


def main():
    maze = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

    start = (0, 0)
    end = (1, 8)

    path = astar(maze, start, end)
    print(path)


main()

1 个答案:

答案 0 :(得分:1)

您有以下两个部分:

# Child is on the closed list
for closed_child in closed_list:
    if child == closed_child:
        continue

# Child is already in the open list
for open_node in open_list:
    if child == open_node and child.g > open_node.g:
        continue

continue将继续内部for循环。因此,它没有任何作用。您正在寻找类似这样的东西:

# Child is on the closed list
is_in_closed = False
for closed_child in closed_list:
    if child == closed_child:
        is_in_closed = True
        break
if is_in_closed:
    continue

# Child is already in the open list
is_in_open = False
for open_node in open_list:
    if child == open_node and child.g > open_node.g:
        is_in_open = True
        break
if is_in_open:
    continue

另外两条评论:

您的距离度量仅计算步数。因此,对角线与水平/垂直步骤一样昂贵。您可能需要更改它,并获取实际长度或近似值,以找到真正最短的路径。

您的试探法是到目标的距离的平方。这不是允许的启发式方法,因为它高估了目标的实际成本。结果,您可能找不到正确的最短路径。对于您的成本函数(步骤数),max(child.position[0] - end_node.position[0], child.position[1] - end_node.position[1])是一种更好且可以接受的启发式方法(您至少需要此步骤数才能达到目标)。