我具有以下功能:
def F(x): #F receives a numpy vector (x) with size (xsize*ysize)
ff = np.zeros(xsize*ysize)
count=0
for i in range(xsize):
for j in range(ysize):
a=function(i,j,xsize,ysize)
if (a>xsize):
ff[count] = x[count]*a
else
ff[count] = x[count]*i*j
count = count +1
return ff
这里有一个细微差别,那就是(例如xsize = 4,ysize = 3)
c=count
x[c=0] corresponds to x00 i=0,j=0
x[c=1] x01 i=0, j=1
x[c=2] x02 i=0, j=2 (i=0, j = ysize-1)
x[c=3] x10 i=1, j=0
... ... ...
x[c=n] x32 i=3 j=2 (i=xsize-1, j=ysize-1)
我的代码就是
ff[c] = F[x[c]*a (condition 1)
ff[c] = F[x[c]*i*j (condition 2)
我可以使用广播来避免嵌套循环,如此链接所述:
Python3: vectorizing nested loops
但是在这种情况下,我必须调用函数(i,j,xsize,ysize),然后才有条件。 我真的需要知道i和j的值。
可以矢量化此功能吗?
编辑:function(i,j,xsize,ysize)
将使用sympy进行符号计算以返回浮点数。因此a
是浮点数,而不是符号表达式。
答案 0 :(得分:1)
首先要注意的是,对于每个索引,您的函数F(x)
可以描述为x(idx) * weight(idx)
,其中权重仅取决于x
的维数。因此,让我们根据函数get_weights_for_shape
来构造代码,以便F
非常简单。为简单起见,weights
将是一个(xsize by size)
矩阵,但我们也可以让F
用于平面输入:
def F(x, xsize=None, ysize=None):
if len(x.shape) == 2:
# based on how you have put together your question this seems like the most reasonable representation.
weights = get_weights_for_shape(*x.shape)
return x * weights
elif len(x.shape) == 1 and xsize * ysize == x.shape[0]:
# single dimensional input with explicit size, use flattened weights.
weights = get_weights_for_shape(xsize, ysize)
return x * weights.flatten()
else:
raise TypeError("must take 2D input or 1d input with valid xsize and ysize")
# note that get_one_weight=function can be replaced with your actual function.
def get_weights_for_shape(xsize, ysize, get_one_weight=function):
"""returns weights matrix for F for given input shape"""
# will use (xsize, ysize) shape for these calculations.
weights = np.zeros((xsize,ysize))
#TODO: will fill in calculations here
return weights
因此,首先我们要为每个元素运行function
(我在参数中为get_one_weight
加上别名),您已经说过该函数不能被矢量化,因此我们可以使用list理解。我们希望矩阵a
的形状为(xsize,ysize)
,因此对于嵌套列表的理解有点倒退:
# notice that the nested list makes the loops in opposite order:
# [ROW for i in Xs]
# ROW = [f() for j in Ys]
a = np.array([[get_one_weight(i,j,xsize,ysize)
for j in range(ysize)
] for i in range(xsize)])
有了这个矩阵a > xsize
,将为条件赋值提供一个布尔数组:
case1 = a > xsize
weights[case1] = a[case1]
对于另一种情况,我们使用索引i
和j
。要向量化2D索引,我们可以使用np.meshgrid
[i,j] = np.meshgrid(range(xsize), range(ysize), indexing='ij')
case2 = ~case1 # could have other cases, in this case it's just the rest.
weights[case2] = i[case2] * j[case2]
return weights #that covers all the calculations
将所有内容放在一起可将其作为完全矢量化的功能:
# note that get_one_weight=function can be replaced with your actual function.
def get_weights_for_shape(xsize, ysize, get_one_weight=function):
"""returns weights matrix for F for given input shape"""
# will use (xsize, ysize) shape for these calculations.
weights = np.zeros((xsize,ysize))
# notice that the nested list makes the loop order confusing:
# [ROW for i in Xs]
# ROW = [f() for j in Ys]
a = np.array([[get_one_weight(i,j,xsize,ysize)
for j in range(ysize)
] for i in range(xsize)])
case1 = (a > xsize)
weights[case1] = a[case1]
# meshgrid lets us use indices i and j as vectorized matrices.
[i,j] = np.meshgrid(range(xsize), range(ysize), indexing='ij')
case2 = ~case1
weights[case2] = i[case2] * j[case2]
#could have more than 2 cases if applicable.
return weights
涵盖了大部分内容。对于您的特定情况,由于这种繁重的计算仅依赖于输入的形状,因此如果您希望使用类似大小的输入重复调用此函数,则可以缓存所有先前计算的权重:
def get_weights_for_shape(xsize, ysize, _cached_weights={}):
if (xsize, ysize) not in _cached_weights:
#assume we added an underscore to real function written above
_cached_weights[xsize,ysize] = _get_weights_for_shape(xsize, ysize)
return _cached_weights[xsize,ysize]
据我所知,这似乎是您将获得的最佳优化。唯一的改进是对function
进行矢量化处理(即使这意味着仅在多个线程中并行调用它),或者可能.flatten()
制作了可以改进的昂贵副本,但我不确定如何