Keras中的自定义图层-尺寸问题

时间:2019-12-11 12:36:09

标签: python keras tensorflow2.0

我想有一个CNN,它以原始信号作为输入,并首先处理短时傅立叶变换。因此,我想使用Keras创建自定义图层。

我遵循了here的说明,并将复杂性降低为以下代码:

class CreateSFTF(Layer):
    def __init__(self, units=32,n_fft=1000,hop_length=0,log=True, **kwargs):
      super(CreateSFTF, self).__init__(**kwargs)
      self.units = units
      self.n_fft = n_fft
      self.hop_length = hop_length
      self.log = log

    def build(self, input_shape):
      super(CreateSFTF, self).build(input_shape)

    def call(self, inputs):
      def _tf_log10(x):
          numerator = tf.math.log(x)
          denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
          return numerator / denominator

      stfts = tf.signal.stft(
          input,
          frame_length=self.n_fft,
          frame_step=self.hop_length,
          window_fn=tf.signal.hann_window,
          pad_end=False
      )
      mag_stfts = tf.abs(stfts)  
      return tf.expand_dims(mag_stfts, 3)

    def get_config(self):
      config = super(CreateSFTF, self).get_config()
      config.update({'units': self.units})
      return config

我在这里使用图层:

def DefineCNNWithFFTAtBeginning(length_signal):
  input = Input(shape = (length_signal,1))
  x = CreateSFTF(n_fft=1000,hop_length=100,log=True)(input)
  x = BatchNormalization()(x) # recommended

  x = layers.Conv2D(8, (3, 3), activation='relu',padding='valid')(x)
  x = layers.Conv2D(8, (3, 3),activation='relu', padding='valid')(x)
  x = layers.MaxPooling2D(pool_size=(4, 4))(x)

  x = layers.Conv2D(16, (5, 5),activation='relu', padding='valid')(x)
  x = layers.Conv2D(4, (5, 5),activation='relu', padding='valid')(x)
  x = layers.MaxPooling2D(pool_size=(5, 5))(x)
  x = Flatten()(x)

  x = layers.Dropout(0.5)(x)

  x = Dense(1,activation='sigmoid')(x)

  model = Model(input, x)

  model.compile(loss='binary_crossentropy',
                optimizer='adam',            
                metrics=['accuracy'])

  model.summary()
  return model

我在这里打电话:

model = DefineCNNWithFFTAtBeginning(76000)
history =model.fit(X_train.values, y_train,
                            validation_data=(X_test.values, y_test),
                            epochs=50, batch_size=32,
                          shuffle = True)

Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 76000)]           0         
_________________________________________________________________
create_sftf (CreateSFTF)     (None, 751, 513, 1)       0         
_________________________________________________________________
batch_normalization (BatchNo (None, 751, 513, 1)       4         
_________________________________________________________________
conv2d (Conv2D)              (None, 749, 511, 8)       80        
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 747, 509, 8)       584       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 186, 127, 8)       0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 182, 123, 16)      3216      
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 178, 119, 4)       1604      
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 35, 23, 4)         0         
_________________________________________________________________
flatten (Flatten)            (None, 3220)              0         
_________________________________________________________________
dropout (Dropout)            (None, 3220)              0         
_________________________________________________________________
dense (Dense)                (None, 1)                 3221      
=================================================================
Total params: 8,709
Trainable params: 8,707
Non-trainable params: 2
_________________________________________________________________
Train on 987 samples, validate on 247 samples
Epoch 1/50
 32/987 [..............................] - ETA: 29s

X_train的形状是(xxxxx,76000)

旧错误消息

  

检查输入时出错:期望input_1具有3个尺寸,但是   形状为(987,1)的数组-已解决

有人知道解决方案吗?预先感谢。

更新

  • Flatten丢失///对不起
  • Pandas数据框“ .values”未提供适当的输入

新错误消息

  

渴望执行功能的输入不能是Keras符号张量,而是找到tf.tensor'input_4:0'shape =(None,76000)dtype = float32

尝试

  • experimental_run_tf_function =假为Model.Compile中的参数- 没用
  • 如果我将x的“自定义”图层交换为 重塑(target_shape =(380,200,1))(输入),它确实有效,所以错误必须 位于自定义图层中。

2 个答案:

答案 0 :(得分:0)

“输入层”为批次大小添加尺寸:

  

输入形状

     

nD张量,形状为:(batch_size,...,input_dim)。最常见的情况是形状为(batch_size,input_dim)的2D输入。

因此,正如keras的文档所述(上文引用),您指定的批量大小为length_signal

尝试类似(length_signal, )( ,length_signal)(或类似的词)的内容。

答案 1 :(得分:0)

您的模型期望形状张量(None,76000,1),但您正在传递(987,1)

您必须预处理数据以符合条件。

987对于该模型不是有效尺寸,必须使用76000 X1。如果不正确,则必须在模型中对其进行校正。

如果您想一次添加额外的尺寸或对单个火车数据进行训练,则可以使用以下代码扩展尺寸

x = np.random.randn((76000,1)) # shape = (76000 X 1)
x = x[None] # shape = (1 X 76000 X 1)