我想编写一个自定义图层,我可以在运行之间保留内存中的变量。 例如,
class MyLayer(Layer):
def __init__(self, out_dim = 51, **kwargs):
self.out_dim = out_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
a = 0.0
self.persistent_variable = K.variable(a)
self.built = True
def get_output_shape_for(self, input_shape):
return (input_shape[0], 1)
def call(self, x, mask=None):
a = K.eval(self.persistent_variable) + 1
K.set_value(self.persistent_variable, a)
return self.persistent_variable
m = Sequential()
m.add(MyLayer(input_shape=(1,)))
当我运行m.predict
时,我希望persistent_variable
得到更新,并打印增加的值。
但它看起来总是打印0
# Dummy input
x = np.zeros(1)
m.predict(x, batch_size=1)
我的问题是,如何在每次persistent_variable
m.predict
增量并保存
谢谢, 纳温
答案 0 :(得分:6)
诀窍是你必须在你的调用函数中调用self.add_update(...)
来注册一个在每次模型评估时都会被调用的函数(我通过挖掘有状态rnns的源代码找到了这个函数)。如果您执行self.stateful = True
,它将为每个训练和预测呼叫调用您的自定义更新功能,否则它将仅在训练期间调用它。例如:
import keras.backend as K
import numpy as np
from keras.engine.topology import Layer
class CounterLayer(Layer):
def __init__(self, stateful=False,**kwargs):
self.stateful = stateful # True means it will increment counter on predict and train, false means it will only increment counter on train
super(CounterLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Define variables in build
self.count = K.variable(0, name="count")
super(CounterLayer, self).build(input_shape)
def call(self, x, mask=None):
updates = []
# The format is (variable, value setting to)
# So this says
# self.pos = self.pos + 1
updates.append((self.count, self.count+1))
# You can append more updates to this list or call add_update more
# times if you want
# Add our custom update
# We stick x here so it calls our update function every time our layer
# is given a new x
self.add_update(updates, x)
# This will be an identity layer but keras gets mad for some reason
# if you just output x so we'll multiply it by 1 so it thinks it is a
# "new variable"
return self.count
# in newer keras versions you might need to name this compute_output_shape instead
def get_output_shape_for(self, input_shape):
# We will just return our count as an array ([[count]])
return (1,1)
def reset_states(self):
self.count.set_value(0)
使用示例:
from keras.layers import Input
from keras.models import Model
from keras.optimizers import RMSprop
inputLayer = Input(shape=(10,))
counter = CounterLayer() # Don't update on predict
# counter = CounterLayer(stateful=True) # This will update each time you call predict
counterLayer = counter(inputLayer)
model = Model(input=inputLayer, output=counterLayer)
optimizer = RMSprop(lr=0.001)
model.compile(loss="mse", optimizer=optimizer)
# See the value of our counter
print counter.count.get_value()
# This won't actually train anything but each epoch will update our counter
# Note that if you say have a batch size of 5, update will be called 5 times per epoch
model.fit(np.zeros([1, 10]), np.array([0]), batch_size=1, nb_epoch=5)
# The value of our counter has now changed
print counter.count.get_value()
model.predict(np.zeros([1, 10]))
# If we did stateful=False, this didn't change, otherwise it did
print counter.count.get_value()