让我们假设我们正在处理一个短字符串集合,其中每个字符串包含2到7个单词。
如果我们要测量每个字符串与该集合中另一个字符串的相似程度,那么BERT是否真的比Fasttrack好得多,还是有一个更好的深度学习库来处理此类问题?
例如
Assistant to VP is much more similar to "Assistant" than "VP"
Python Engineer is much more similar to "Python Developer" than "Mechanical Engineer"
Taking Care of Lost Cat is much more similar to "Pet Care" than "Losing a Cat"
我想知道使用哪种预训练的嵌入方式最适合此类问题。我对BERT不太了解,但是我知道它是当今NLP的最新算法,所以我想知道它是否与此类问题有关。