我正在尝试为timestamp interval列创建一个合适的bin,
使用
之类的代码df['Bin'] = pd.cut(df['interval_length'], bins=pd.to_timedelta(['00:00:00','00:10:00','00:20:00','00:30:00','00:40:00','00:50:00','00:60:00']))
结果df如下:
time_interval | bin
00:17:00 (0 days 00:10:00, 0 days 00:20:00]
01:42:00 NaN
00:15:00 (0 days 00:10:00, 0 days 00:20:00]
00:00:00 NaN
00:06:00 (0 days 00:00:00, 0 days 00:10:00]
有一点差,因为我想要的结果是调整时间值而不是天数,我还希望上限或最后一个间隔为60分钟或inf(或更多)
所需的输出:
time_interval | bin
00:17:00 (00:10:00,00:20:00]
01:42:00 (00:60:00,inf]
00:15:00 (00:10:00,00:20:00]
00:00:00 (00:00:00,00:10:00]
00:06:00 (00:00:00,00:10:00]
感谢您的光临!
答案 0 :(得分:1)
在熊猫inf
中不存在时间增量,因此使用了最大值。如果希望bin由timedelta填充,还可以为include最小值使用参数include_lowest=True
:
b = pd.to_timedelta(['00:00:00','00:10:00','00:20:00',
'00:30:00','00:40:00',
'00:50:00','00:60:00'])
b = b.append(pd.Index([pd.Timedelta.max]))
df['Bin'] = pd.cut(df['time_interval'], include_lowest=True, bins=b)
print (df)
time_interval Bin
0 00:17:00 (0 days 00:10:00, 0 days 00:20:00]
1 01:42:00 (0 days 01:00:00, 106751 days 23:47:16.854775]
2 00:15:00 (0 days 00:10:00, 0 days 00:20:00]
3 00:00:00 (-1 days +23:59:59.999999, 0 days 00:10:00]
4 00:06:00 (-1 days +23:59:59.999999, 0 days 00:10:00]
如果要使用字符串代替时间增量,请使用zip
来创建带有附加'inf'
的标签:
vals = ['00:00:00','00:10:00','00:20:00',
'00:30:00','00:40:00', '00:50:00','00:60:00']
b = pd.to_timedelta(vals).append(pd.Index([pd.Timedelta.max]))
vals.append('inf')
labels = ['{}-{}'.format(i, j) for i, j in zip(vals[:-1], vals[1:])]
df['Bin'] = pd.cut(df['time_interval'], include_lowest=True, bins=b, labels=labels)
print (df)
time_interval Bin
0 00:17:00 00:10:00-00:20:00
1 01:42:00 00:60:00-inf
2 00:15:00 00:10:00-00:20:00
3 00:00:00 00:00:00-00:10:00
4 00:06:00 00:00:00-00:10:00
答案 1 :(得分:1)
您可以只使用标签来解决-
df['Bin'] = pd.cut(df['interval_length'], bins=pd.to_timedelta(['00:00:00','00:10:00','00:20:00','00:30:00','00:40:00','00:50:00','00:60:00', '24:00:00']), labels=['(00:00:00,00:10:00]', '(00:10:00,00:20:00]', '(00:20:00,00:30:00]', '(00:30:00,00:40:00]', '(00:40:00,00:50:00]', '(00:50:00,00:60:00]', '(00:60:00,inf]'])