我正在使用ggpredict函数显示lmer模型的结果。
模型具有一个连续X(RT),一个连续Y(RC1)和4个离散因子(2x2x2x14)。 型号:
/home/marcus/Documents/projects/nowwhatdoiread/nwdir-server/app/Server.hs:19:23: error:
• No instance for (MonadIO ScottyM)
arising from a use of ‘withPersist’
• In the second argument of ‘scotty’, namely ‘(withPersist router)’
In the expression: scotty 4200 (withPersist router)
In an equation for ‘server’:
server = scotty 4200 (withPersist router)
|
19 | server = scotty 4200 (withPersist router)
| ^^^^^^^^^^^^^^^^^^
/home/marcus/Documents/projects/nowwhatdoiread/nwdir-server/app/Server.hs:23:3: error:
• No instance for (MonadTrans (SeldaT SQLite))
arising from a use of ‘lift’
• In a stmt of a 'do' block: lift $ get "/book/:id" searchBook
In the expression: do lift $ get "/book/:id" searchBook
In an equation for ‘router’:
router = do lift $ get "/book/:id" searchBook
|
23 | lift $ get "/book/:id" searchBook
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/home/marcus/Documents/projects/nowwhatdoiread/nwdir-server/app/Server.hs:27:12: error:
• No instance for (MonadSelda
(Web.Scotty.Internal.Types.ActionT
Data.Text.Internal.Lazy.Text IO))
arising from a use of ‘query’
• In a stmt of a 'do' block: books <- query selectBookQuery
In the expression:
do books <- query selectBookQuery
json books
In an equation for ‘searchBook’:
searchBook
= do books <- query selectBookQuery
json books
where
selectBookQuery
= do book <- select goodreadsBooks
....
|
27 | books <- query selectBookQuery
| ^^^^^^^^^^^^^^^^^^^^^
由于太大而没有14级因子的情节示例
问题1: 为了简化图表,我希望组m3和m4的组合得到结果。我试过了:
SailorJupiter <- lmer(RT~RC1*m2*m3*m5*m4 + (1|Trial:sonTrial) + (1|Subject) + (1|Trial) + (1|sonleft) + (1|sonright), data=audiostim, REML=FALSE)
library(see)
library(ggeffects)
a <- ggpredict(SailorJupiter, c("RC1","m2","m3","m4","m5"), dependencies=TRUE)
plot(a)
但这不起作用。
问题2:是否有一种方法可以只使用一个因子水平来简化绘图?我知道其他一些绘图程序包也允许它,但是在 a <- ggpredict(SailorJupiter, c("RC1","m2","m3:m4","m5"), dependencies=TRUE)
plot(a)
中找不到它。