我为自定义转换定义了以下类,并使用Scikit-Learn实现了必要的功能性方法:
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household,bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
然后我在这样的管道中调用该类和其他类:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([
('imputer', SimpleImputer(strategy="median"))
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)
这将产生以上错误消息:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-52-bcea5f2689c0> in <module>
4 num_pipeline = Pipeline([
5 ('imputer', SimpleImputer(strategy="median"))
----> 6 ('attribs_adder', CombinedAttributesAdder()),
7 ('std_scaler', StandardScaler()),
8 ])
TypeError: 'tuple' object is not callable
答案 0 :(得分:2)
此行后您缺少逗号:
('imputer', SimpleImputer(strategy="median"))