如何将Mobilenet的最后一层的输出提供给Unet模型

时间:2019-12-03 10:06:52

标签: keras computer-vision image-segmentation unity3d-unet mobilenet

我正在尝试使用在imagenet数据集上预先训练的Keras mobilenet模型构建图像分割模型。如何进一步训练模型,我想将U-net层添加到现有模型中,而仅使用移动网模型作为骨干来训练u-net体系结构的层。

问题:mobilenet模型的最后一层是(RelU)层,尺寸为(7x7x1024),我希望将其重塑为(256x256x3),这可以由U-net输入层理解。 >

1 个答案:

答案 0 :(得分:3)

不是最后一层,但是可以使用以下代码在移动网络上创建unet:

ALPHA = 1 # Width hyper parameter for MobileNet (0.25, 0.5, 0.75, 1.0). Higher width means more accurate but slower

IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224

HEIGHT_CELLS = 28
WIDTH_CELLS = 28

def create_model(trainable=True):
    model = MobileNet(input_shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 3), include_top=False, alpha=ALPHA, weights="imagenet")

    block0 = model.get_layer("conv_pw_1_relu").output 
    block = model.get_layer("conv_pw_1_relu").output
    block1 = model.get_layer("conv_pw_3_relu").output
    block2 = model.get_layer("conv_pw_5_relu").output
    block3 = model.get_layer("conv_pw_11_relu").output
    block4 = model.get_layer("conv_pw_13_relu").output

    x = Concatenate()([UpSampling2D()(block4), block3])
    x = Concatenate()([UpSampling2D()(x), block2])
    x = Concatenate()([UpSampling2D()(x), block1])
    x = Concatenate()([UpSampling2D()(x), block])
 #   x = Concatenate()([UpSampling2D()(x), block0])
    x = UpSampling2D()(x)
    x = Conv2D(1, kernel_size=1, activation="sigmoid")(x)

    x = Reshape((IMAGE_HEIGHT, IMAGE_HEIGHT))(x)

    return Model(inputs=model.input, outputs=x)