下面的代码使用Tensorflow在python中实现CNN。
如何输出最后一层的功能?
我在网上找到了调用tf.Session()
的情况的代码,但下面的代码(改编自TensorFlow教程)不使用tf.Session()
。我在return pool2_flat
中尝试使用cnn_model_fn
,但我收到了错误消息:
ValueError: model_fn should return an EstimatorSpec.
import ...
def cnn_model_fn(features, labels, mode):
# Input Layer
input_layer = tf.reshape(features["x"], [-1, 6, 40, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[3, 3],
padding="same", activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Flatten tensor
pool2_flat = tf.reshape(pool1, [-1, 20 * 3 * 64])
# Dense Layer with 1024 neurons
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits layer
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
...
# Create the Estimator
convnetVoc_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir=TMP_FOLDER)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
num_epochs=None,
shuffle=True)
convnetVoc_classifier.train(
input_fn=train_input_fn,
steps=1)
# Evaluate model's accuracy & print results.
test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = convnetVoc_classifier.evaluate(input_fn=test_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()