我正在阅读BayesFactor教程here
> summary(aov(RT ~ shape*color + Error(ID/(shape*color)), data=puzzles))
Error: ID
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11 226 20.6
Error: ID:shape
Df Sum Sq Mean Sq F value Pr(>F)
shape 1 12.0 12.00 7.54 0.019 *
Residuals 11 17.5 1.59
Error: ID:color
Df Sum Sq Mean Sq F value Pr(>F)
color 1 12.0 12.00 13.9 0.0033 **
Residuals 11 9.5 0.86
Error: ID:shape:color
Df Sum Sq Mean Sq F value Pr(>F)
shape:color 1 0.0 0.00 0 1
Residuals 11 30.5 2.77
> bf = anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom="ID")
> bf
[1] shape + ID : 2.775378 ±0.77%
[2] color + ID : 2.829041 ±1%
[3] shape + color + ID : 11.99858 ±3.52%
[4] shape + color + shape:color + ID : 4.431137 ±2.01%
经典的方差分析表明没有相互作用,但是bf
似乎提供了强有力的证据支持H1,即存在相互作用(模型4)。我的解释正确吗?