Numpy Backprop成本并未降低

时间:2019-11-29 01:34:59

标签: python numpy machine-learning backpropagation

我正在研究一个python脚本,该脚本允许用户定义完全连接的神经网络中的隐藏层数及其节点数。

问题是,当我尝试更大的数据集时,错误以nan出现。 我不确定为什么会这样,但是在google colab中运行时,我也收到了python错误。

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:64: RuntimeWarning: overflow encountered in exp

这是一个小型数据集的输出,其中没有发生错误...

Network Architecture:
----------------------------------------------------------------------------
Input Layer Number of Weights: 60
Hidden Layer 1 Number of Weights: 400
Output Layer Number of Weights: 20
----------------------------------------------------------------------------
Total Number of Weights:  480

Epoch: 1 ERROR: 8.148725708134741e-05
Epoch: 2 ERROR: 8.148670920765655e-05
Epoch: 3 ERROR: 8.14861613419593e-05
Epoch: 4 ERROR: 8.14856134840336e-05
Epoch: 5 ERROR: 8.148506563421254e-05
Epoch: 6 ERROR: 8.148451779205201e-05
Epoch: 7 ERROR: 8.148396995799612e-05
Epoch: 8 ERROR: 8.148342213176729e-05
Epoch: 9 ERROR: 8.148287431336554e-05
Epoch: 10 ERROR: 8.14823265030129e-05
Epoch: 11 ERROR: 8.148177870037632e-05
Epoch: 12 ERROR: 8.148123090584436e-05
Epoch: 13 ERROR: 8.148068311908396e-05
Epoch: 14 ERROR: 8.148013534031717e-05
Epoch: 15 ERROR: 8.147958756948848e-05

Done.
Final Accuracy: 99.99185204124305%

Prediction:
array([0.])

这是sklearn波士顿数据集的输出

Network Architecture:
----------------------------------------------------------------------------
Input Layer Number of Weights: 260
Hidden Layer 1 Number of Weights: 400
Output Layer Number of Weights: 20
----------------------------------------------------------------------------
Total Number of Weights:  680

Epoch: 1 ERROR: nan
Epoch: 2 ERROR: nan
Epoch: 3 ERROR: nan
Epoch: 4 ERROR: nan
Epoch: 5 ERROR: nan
Epoch: 6 ERROR: nan
Epoch: 7 ERROR: nan
Epoch: 8 ERROR: nan
Epoch: 9 ERROR: nan
Epoch: 10 ERROR: nan
Epoch: 11 ERROR: nan
Epoch: 12 ERROR: nan
Epoch: 13 ERROR: nan
Epoch: 14 ERROR: nan
Epoch: 15 ERROR: nan

Done.
Final Accuracy: nan%

Prediction:
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:64: RuntimeWarning: overflow encountered in exp
array([nan])

任何帮助都会很棒! 下面的完整脚本...

# Python 3
import numpy as np
np.seterr(divide='ignore', invalid='ignore')

class Model:
  def __init__(self, x, y, number_of_hidden_layers=2, number_of_hidden_nodes=30, quiet=False):
    self.x = x
    self.y = y
    self.number_of_hidden_layers = number_of_hidden_layers
    self.number_of_hidden_nodes = number_of_hidden_nodes
    self.input_layer_activation_function = "tanh"
    self.hidden_layer_activation_function = "tanh"
    self.output_layer_activation_function = "tanh"

    #making a random, reproducible seed
    np.random.seed(1)

    input_shape = self.x[0].shape[0]
    output_shape = self.y[0].shape[0]

    number_of_hidden_nodes = self.number_of_hidden_nodes
    number_of_hidden_layers = self.number_of_hidden_layers

    #init the full lists of hidden plus 2 for input and output
    #weights
    self.W = [None] * (number_of_hidden_layers + 2)
    #activations
    self.A = [None] * (number_of_hidden_layers + 2)
    #deltas
    self.D = [None] * (number_of_hidden_layers + 2)

    input_layer_weights = 2 * np.random.random((input_shape,number_of_hidden_nodes)) - 1
    self.W[0] = (input_layer_weights)

    #middle
    for i in range(number_of_hidden_layers):
      i += 1
      hidden_layer_weights = 2 * np.random.random((number_of_hidden_nodes,number_of_hidden_nodes)) - 1
      self.W[i] = (hidden_layer_weights)

    #output
    output_layer_weights = 2 * np.random.random((number_of_hidden_nodes,output_shape)) - 1
    self.W[len(self.W)-1] = (output_layer_weights)

    if quiet == False:
      #show the architecture:
      print ("Network Architecture:")
      print ("----------------------------------------------------------------------------")
      total = 0
      for count, i in enumerate(self.W):
        total += (i.shape[0] * i.shape[1])
        if count == 0:
          print("Input Layer Number of Weights: " + str(i.shape[0] * i.shape[1]))
        elif count == (len(self.W)-1):
          print("Output Layer Number of Weights: " + str(i.shape[0] * i.shape[1]))
        else:
          print("Hidden Layer " + str(count) + " Number of Weights: " + str(i.shape[0] * i.shape[1]))
      print ("----------------------------------------------------------------------------")
      print("Total Number of Weights: ", total)
      print()

  #nonlin func
  def nonlin(self, x, deriv, function):
    if function == "tanh":
      t=(np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))
      if (deriv==True):
          dt=1-t**2
          return dt
      return t

    elif function == "sigmoid":
      if (deriv==True):
          return (x * (1-x))
      return 1/(1 + np.exp(-x))

    elif function == "leaky_relu":
      if (deriv==True):
          dx = np.ones_like(x)
          dx[x < 0] = 0.01
          return dx
      return np.where(x > 0, x, x * 0.01)

  def predict(self, x):
    #forward pass
    input_layer_activation = self.nonlin(np.dot(x, self.W[0]), False, self.input_layer_activation_function)
    self.A[0] = (input_layer_activation)

    for i in range(self.number_of_hidden_layers):
      i += 1
      hidden_layer_activation = self.nonlin(np.dot(self.A[i-1], self.W[i]), False, self.hidden_layer_activation_function)

    output_layer_activation = self.nonlin(np.dot(hidden_layer_activation, self.W[len(self.W)-1]), False,  self.output_layer_activation_function)
    print()
    print("Prediction:")
    return output_layer_activation


  #training
  def train(self, loss_function, epochs, alpha=0.001):
    for j in range(epochs):

        #forward pass
        input_layer_activation = self.nonlin(np.dot(self.x, self.W[0]), False, self.input_layer_activation_function)
        self.A[0] = (input_layer_activation)

        for i in range(self.number_of_hidden_layers):
          i += 1
          hidden_layer_activation = self.nonlin(np.dot(self.A[i-1], self.W[i]), False, self.hidden_layer_activation_function)
          self.A[i] = (hidden_layer_activation)

        output_layer_activation = self.nonlin(np.dot(hidden_layer_activation, self.W[len(self.W)-1]), False,  self.output_layer_activation_function)
        self.A[len(self.A)-1] = (output_layer_activation)

        #choose error in compile
        #so output_layer_activation is the prediction!!!
        if loss_function == "mse":
          error = (self.y - output_layer_activation) **2
        if loss_function == "mae":
          error = np.abs(self.y - output_layer_activation)
        if loss_function == "cce":
          output_layer_activation = np.clip(output_layer_activation, 1e-12, 1. - 1e-12)
          total_number = output_layer_activation.shape[0]
          error = -np.sum(self.y*np.log(output_layer_activation+1e-9))/total_number
        else:
          error = self.y - output_layer_activation

        #print every n steps
        divis = epochs//10
        if (j % divis) == 0:
            print ('Epoch: ' + str(j+1) + ' ERROR: ' + str(np.mean(np.abs(error))))

        #backwards pass
        output_delta = error * self.nonlin(output_layer_activation, True, self.output_layer_activation_function)
        self.D[0] = output_delta

        #setting working vars
        working_delta = output_delta
        past_layer_weights = self.W[len(self.W)-1]

        for i in range(self.number_of_hidden_layers):
          working_index = i+1

          hidden_layer_activation_error = working_delta.dot(past_layer_weights.T)

          hidden_layer_activation_delta = hidden_layer_activation_error * self.nonlin(self.A[len(self.A)-working_index-1], True, self.hidden_layer_activation_function)

          self.D[working_index] = hidden_layer_activation_delta

          working_delta = hidden_layer_activation_delta
          past_layer_weights = self.W[len(self.W)-(working_index+1)]

        input_layer_activation_error = self.D[working_index].dot(self.W[working_index].T)

        input_layer_activation_delta = input_layer_activation_error * self.nonlin(input_layer_activation, True, self.input_layer_activation_function)
        self.D[working_index+1] = input_layer_activation_delta

        #update weights
        internal_alpha = alpha
        self.W[len(W)-1] += input_layer_activation.T.dot(self.D[0]) * internal_alpha

        for i,z in enumerate(range(number_of_hidden_layers,0,-1)):
          i += 1
          self.W[z] += self.A[i].T.dot(self.D[i]) * internal_alpha

        self.W[0] += self.x.T.dot(self.D[len(self.D)-1]) * internal_alpha

    #ending print out
    print()
    print("Done.")
    print("Final Accuracy: " + str(np.abs((np.mean(np.abs(error)))-1)*100) + "%")

#inputs
x = np.array([[0,0,0], [1,1,1], [1,1,1], [0,0,0]])
#output
y = np.array([[0],[1],[1],[0]])

from sklearn.datasets import load_boston
boston = load_boston()
x = boston["data"]
y = boston["target"]
y = y.reshape((x.shape[0], 1))

model = Model(x, y, number_of_hidden_layers=1, number_of_hidden_nodes=20)
model.train("mse", 15, alpha=.001)
model.predict(x[0])

1 个答案:

答案 0 :(得分:1)

我认为这是一个回归模型,并且似乎对所有层都使用tanh激活。由于tanh的输出范围是[-1,+1],因此应在最后一层使用类似relu的激活,因为sklearn波士顿数据集的目标范围是[0,50]。