我正在尝试实现自己的LSTM网络。我实现了反向传播算法,但它没有通过梯度检查。无法意识到错误在哪里。请帮忙
以下是问题代码:
def backward_propagation(self, x, y, cache):
# T - the length of the sequence
T = len(y)
# perform forward propagation
cache = self.forward_propagation(x)
# ...
# delta for output layer
dy = cache['y'].copy()
dy[np.arange(len(y)), y] -= 1. # softmax loss gradient
dhtmp = np.zeros((1, self.hidden_dim))
dctmp = np.zeros((1, self.hidden_dim))
for t in np.arange(T)[::-1]:
dV += np.outer(dy[t], h[t].T)
dhtmp = self.V.T.dot(dy[t])
for bptt_step in np.arange(0, t+1)[::-1]:
# add to gradients at each previous step
do[bptt_step] = dhtmp * ct[bptt_step]
dct[bptt_step] = dhtmp * o[bptt_step]
dctmp += dct[bptt_step] * (1.0 - ct[bptt_step]**2)
di[bptt_step] = dctmp * g[bptt_step]
df[bptt_step] = dctmp * c[bptt_step-1]
dg[bptt_step] = dctmp * i[bptt_step]
# backprop activation functions
diga[bptt_step] = di[bptt_step] * i[bptt_step] * (1.0 - i[bptt_step])
dfga[bptt_step] = df[bptt_step] * f[bptt_step] * (1.0 - f[bptt_step])
doga[bptt_step] = do[bptt_step] * o[bptt_step] * (1.0 - o[bptt_step])
dgga[bptt_step] = dg[bptt_step] * (1.0 - g[bptt_step] ** 2)
# backprop matrix multiply
dWi += np.outer(diga[bptt_step], h[bptt_step-1])
dWf += np.outer(dfga[bptt_step], h[bptt_step-1])
dWo += np.outer(doga[bptt_step], h[bptt_step-1])
dWg += np.outer(dgga[bptt_step], h[bptt_step-1])
dUi[:, x[bptt_step]] += diga[bptt_step]
dUf[:, x[bptt_step]] += dfga[bptt_step]
dUo[:, x[bptt_step]] += doga[bptt_step]
dUg[:, x[bptt_step]] += dgga[bptt_step]
# update deltas for next step
# here dh is accumulated as shared variable
dhtmp = np.dot(self.Wi, diga[bptt_step])
# dhtmp += np.dot(self.Wf, dfga[bptt_step]) <- is it needed to accumulate other dhtmp's?
# dhtmp += np.dot(self.Wo, doga[bptt_step])
# dhtmp += np.dot(self.Wg, dgga[bptt_step])
dctmp = dctmp * f[bptt_step]
return [dV, dWi, dWf, dWo, dWg, dUi, dUf, dUo, dUg]
我想我可以在矩阵向量乘法或改变dhtmp,dctmp时犯一些错误。
答案 0 :(得分:1)
好吧,过了一会儿我终于明白了。还有一个额外的内循环。这段代码工作正常:
def backward_propagation(self, x, y, cache):
# T - the length of the sequence
T = len(y)
# perform forward propagation
cache = self.forward_propagation(x)
#...
# delta for output layer
dy = cache['y'].copy()
dy[np.arange(len(y)), y] -= 1.0 # softmax loss gradient
# print("dy: ", dy)
dhtmp = np.zeros((1, self.hidden_dim))
dh_prev = np.zeros((1, self.hidden_dim))
dctmp = np.zeros((1, self.hidden_dim))
for t in np.arange(T)[::-1]:
dV += np.outer(dy[t], h[t].T)
dhtmp = self.V.T.dot(dy[t]) + dh_prev
# add to gradients at each previous step
do[t] = dhtmp * ct[t]
dct[t] = dhtmp * o[t]
dctmp += dct[t] * (1.0 - ct[t]**2)
di[t] = dctmp * g[t]
df[t] = dctmp * c[t-1]
dg[t] = dctmp * i[t]
# backprop activation functions
diga[t] = di[t] * i[t] * (1.0 - i[t])
dfga[t] = df[t] * f[t] * (1.0 - f[t])
doga[t] = do[t] * o[t] * (1.0 - o[t])
dgga[t] = dg[t] * (1.0 - g[t] ** 2)
# backprop matrix multiply
dWi += np.outer(diga[t], h[t-1])
dWf += np.outer(dfga[t], h[t-1])
dWo += np.outer(doga[t], h[t-1])
dWg += np.outer(dgga[t], h[t-1])
dUi[:, x[t]] += diga[t]
dUf[:, x[t]] += dfga[t]
dUo[:, x[t]] += doga[t]
dUg[:, x[t]] += dgga[t]
# update deltas for next step
# here dh is accumulated as shared variable
dh_prev = np.dot(self.Wi.T, diga[t])
dh_prev += np.dot(self.Wf.T, dfga[t])
dh_prev += np.dot(self.Wo.T, doga[t])
dh_prev += np.dot(self.Wg.T, dgga[t])
dctmp = dctmp * f[t]
return [dV, dWi, dWf, dWo, dWg, dUi, dUf, dUo, dUg]
希望有人会觉得这个答案很有用。