在计算机视觉中,特别是计算立体声,我们可以轻松编写算法来查找两个摄像机图像中的对应点。该算法可以用伪代码编写,如下所示:
Repeat for each feature point in the left image {
calculate the epipolar line in the right image
if the epipolar line intersects only one feature point
then match those points and remove them from the lists
}
Until no feature point can be matched uniquely
我的问题是如果使用三个摄像头而不是标准的两个摄像头设置,如何更改此算法?
只是一些好的想法或这个伪代码的一些改变版本将是辉煌的。
谢谢。
答案 0 :(得分:2)
在任一图像之间有一对匹配的特征点后,您可以确定剩余图像中这些极线的交叉点,并确定最后一个特征。 因此,您可以为“第一和第三”以及“第二和第三”相机对重复您的伪代码:
Repeat for each feature point in the first image {
calculate the epipolar line in the second image
calculate the epipolar line in the third image
if the epipolar line in either image intersects only one feature point {
calculate epipolar line for matching feature point in the other image.
Intersection with epipolar line from first image gives the third point.
remove triplet from the list
}
Until no feature point can be matched uniquely.
然后
Repeat for each feature point in the second image {
calculate the epipolar line in the third image
if the epipolar line intersects only one feature point {
calculate epipolar line for matching feature point in the first image.
Intersection with epipolar line from second image gives the third point.
remove triplet from the list
}
Until no feature point can be matched uniquely starting from the second image.