我正在尝试使用Python从大约3亿行和大约200 GB的大文件中读取和写入数据。我已经能够使基本代码正常工作,但想对其进行并行化以使其运行得更快。为此,我一直在遵循本指南:https://www.blopig.com/blog/2016/08/processing-large-files-using-python/。但是,当我尝试并行化代码时,出现错误:“ *之后的TypeError:worker()参数必须是可迭代的,而不是int”。我如何才能运行代码,您对提高效率有任何建议吗?请注意,我是Python的新手。
基本代码(其中设置了id_pct1和id_pct001):
with open(file1) as f, open('file1', 'w') as out_f1, open('file2', 'w') as out_f001:
for line in f:
data = line.split('*')
if data[30] in id_pct1: out_f1.write(line)
if data[30] in id_pct001: out_f001.write(line)
并行代码:
def worker(lineByte):
with open(file1) as f, open('file1', 'w') as out_f1, open('file2', 'w') as out_f001:
f.seek(lineByte)
line = f.readline()
data = line.split('*')
if data[30] in id_pct1: out_f1.write(line)
if data[30] in id_pct001: out_f001.write(line)
def main():
pool = mp.Pool()
jobs = []
with open('Subsets/FirstLines.txt') as f:
nextLineByte = 0
for line in f:
jobs.append(pool.apply_async(worker,(nextLineByte)))
nextLineByte += len(line)
for job in jobs:
job.get()
pool.close()
if __name__ == '__main__':
main()
答案 0 :(得分:0)
尝试
jobs.append(pool.apply_async(worker,(nextLineByte,)))
pool.apply_async()需要可迭代。
(nextLineByte)用作int,这是引发的错误。