我有这个数据框:
df = pd.DataFrame({'id':[1,2,3,4], 'score':[0.35,3.4,5.5,8]})
df
id score
0 1 0.35
1 2 3.4
2 3 5.5
3 4 8
和此列表:
L = list(range(1,7))
L
[1, 2, 3, 4, 5, 6]
我想将df.scores的值四舍五入为L中最接近的值。因此,我想得到:
df
id score
0 1 1
1 2 3
2 3 6
3 4 6
我尝试了
df['score'].apply(lambda num : min([list(range(1,7)), key = lambda x:abs(x-num)])
但是它没有用(我是一个初学者,如果这种尝试是没有道理的,对不起。)
我该怎么办?谢谢您的帮助
答案 0 :(得分:2)
如果大型DataFrame和性能很重要,则Numpy解决方案会更好:
L = list(range(1,7))
a = np.array(L)
df['score'] = a[np.argmin(np.abs(df['score'].values - a[:, None]), axis=0)]
print (df)
id score
0 1 1
1 2 3
2 3 5
3 4 6
工作方式:
首先将列表转换为数组:
print (a)
[1 2 3 4 5 6]
然后将[:, None]
广播到所有组合的2d数组中减去:
print (df['score'].values - a[:, None])
[[-0.65 2.4 4.5 7. ]
[-1.65 1.4 3.5 6. ]
[-2.65 0.4 2.5 5. ]
[-3.65 -0.6 1.5 4. ]
[-4.65 -1.6 0.5 3. ]
[-5.65 -2.6 -0.5 2. ]]
将值转换为绝对值:
print (np.abs(df['score'].values - a[:, None]))
[[0.65 2.4 4.5 7. ]
[1.65 1.4 3.5 6. ]
[2.65 0.4 2.5 5. ]
[3.65 0.6 1.5 4. ]
[4.65 1.6 0.5 3. ]
[5.65 2.6 0.5 2. ]]
获取最小值的位置:
print (np.argmin(np.abs(df['score'].values - a[:, None]), axis=0))
[0 2 4 5]
因此,如果使用索引获取a
的值:
print (a[np.argmin(np.abs(df['score'].values - a[:, None]), axis=0)])
[1 3 5 6]
答案 1 :(得分:1)
您真的很亲密!我更新了DataFrame中的值,并整理了lambda函数。
v₁ ◌ v₂ ◌ ⋯ ◌ vₙ
输出:
df = pd.DataFrame({'id':[1,2,3,4], 'score':[0.35,3.4,5.5,8]})
L = list(range(1,7))
df['score'] = df['score'].apply(lambda num : min(L, key=lambda x:abs(x-num)))