我正在使用具有多个实验室值的患者数据库,即使每个实验室日期相同,每个实验室也会获得自己的行。我想根据每个患者的重复日期折叠行,以便每个日期有一行,其中包含当天所有实验室的结果。
我尝试了各种groupby()
和pd.merge()
函数,但无济于事。
玩具示例:
import pandas as pd
import numpy as np
PID = [1, 1, 1, 2, 2, 2]
ALC = [200, np.nan, np.nan, 300, np.nan, np.nan]
WBC = [np.nan, 1000, np.nan, np.nan, 2000, np.nan]
per_neut = [np.nan, np.nan, 0.64, np.nan, np.nan, 0.77]
date = ['11/1/18', '11/2/18', '11/2/18', '1/11/04',
'1/11/04','1/11/04']
prac_dict = {'PID':PID, 'date':date, 'ALC':ALC, 'WBC':WBC,
'per_neut':per_neut}
pract_df = pd.DataFrame(prac_dict)
这就是我所拥有的
print(pract_df)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 NaN
2 1 11/2/18 NaN NaN 0.64
3 2 1/11/04 300.0 NaN NaN
4 2 1/11/04 NaN 2000.0 NaN
5 2 1/11/04 NaN NaN 0.77
这就是我想要的:
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 0.64
2 2 1/11/04 300.0 2000.0 0.77
非常欢迎提出建议!
答案 0 :(得分:0)
如果需要每列每组第一个不丢失的值,请使用GroupBy.first
:
df = pract_df.groupby(['PID','date'], as_index=False).first()
print (df)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 0.64
2 2 1/11/04 300.0 2000.0 0.77
但是,如果需要每组重复的值,例如50
列的最后一组中的ALC
,则使用sum
指定聚合函数,例如mean
,first
}第二个值丢失:
PID = [1, 1, 1, 2, 2, 2]
ALC = [200, np.nan, np.nan, 300, np.nan, 50]
WBC = [np.nan, 1000, np.nan, np.nan, 2000, np.nan]
per_neut = [np.nan, np.nan, 0.64, np.nan, np.nan, 0.77]
date = ['11/1/18', '11/2/18', '11/2/18', '1/11/04',
'1/11/04','1/11/04']
prac_dict = {'PID':PID, 'date':date, 'ALC':ALC, 'WBC':WBC,
'per_neut':per_neut}
pract_df = pd.DataFrame(prac_dict)
print (pract_df)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 NaN
2 1 11/2/18 NaN NaN 0.64
3 2 1/11/04 300.0 NaN NaN
4 2 1/11/04 NaN 2000.0 NaN
5 2 1/11/04 50.0 NaN 0.77
df1 = pract_df.groupby(['PID','date'], as_index=False).sum(min_count=1)
print (df1)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 0.64
2 2 1/11/04 350.0 2000.0 0.77
df2 = pract_df.groupby(['PID','date'], as_index=False).mean()
print (df2)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 0.64
2 2 1/11/04 175.0 2000.0 0.77
df3 = pract_df.groupby(['PID','date'], as_index=False).first()
print (df3)
PID date ALC WBC per_neut
0 1 11/1/18 200.0 NaN NaN
1 1 11/2/18 NaN 1000.0 0.64
2 2 1/11/04 300.0 2000.0 0.77