我试图通过应用Poincare-Bendixson定理绘制Oregonator模型的零曲线(稳态)曲线以断言极限环的存在。我很接近,但是由于某种原因,生成的图显示了两条直线。我认为这与绘图阶段有关。有什么想法吗?
关于如何构造四边形以应用该定理的任何提示也将不胜感激。
代码:
import numpy as np
import matplotlib.pyplot as plt
# Dimensionless parameters
eps = 0.04
q = 0.0008
f = 1
# Oregonator model as numpy array
def Sys(Y, t = 0):
return np.array((Y[0] * (1 - Y[0] - ((Y[0] - q) * f * Y[1]) / (Y[0] + q)) / eps, Y[0] - Y[1] ))
# Oregonator model steady states
def g(x,z):
return (x * (1 - x) + ((q - x) * f * z) / (q + x)) / eps
def h(x,z):
return x - z
# Initial lists containing values
x = []
z = []
def sys(iv1, iv2, dt, time):
# initial values:
x.append(iv1)
z.append(iv2)
# Compute and fill lists
for i in range(time):
x.append(x[i] + (g(x[i],z[i])) * dt)
z.append(z[i] + (h(x[i],z[i])) * dt)
return x, z
sys(1, 0.5, 0.01, 30)
# Locate and find equilibrium points
eqp = []
def find_fixed_points(r):
for x in range(r):
for z in range(r):
if ((g(x, z) == 0) and (h(x, z) == 0)):
eqp.append((x,z))
return eqp
# Plot nullclines
plt.plot([0,2],[2,0], 'r-', lw=2, label='x-nullcline')
plt.plot([1,1],[0,2], 'b-', lw=2, label='z-nullcline')
# Plot equilibrium points
for point in eqp:
plt.plot(point[0],point[1],"red", marker = "o", markersize = 10.0)
plt.legend(loc='best')
x = np.linspace(0, 2, 20)
z = np.linspace(0, 2, 20)
X1 , Z1 = np.meshgrid(x, z) # Create a grid
DX1, DZ1 = Sys([X1, Z1]) # Compute reaction rate on the grid
M = (np.hypot(DX1, DZ1)) # Norm reaction rate
M[ M == 0] = 1. # Avoid zero division errors
DX1 /= M # Normalise each arrows
DZ1 /= M
plt.quiver(X1, Z1, DX1, DZ1, M, pivot='mid')
plt.xlabel("x(\u03C4)")
plt.ylabel("z(\u03C4)")
plt.legend()
plt.grid()
plt.show()