样本数据集:
Date Text
2018-01-01 Apple
2018-01-01 Banana
2018-01-06 Cat
2018-01-08 Dog
2018-01-09 Elephant
我希望我的数据集看起来像这样:
Date Text
2018-01-01 Apple Banana Cat
2019-01-08 Dog Elephant
答案 0 :(得分:1)
尝试使用groupby函数。 这是一个可能有帮助的示例代码
import pandas as pd
import numpy as np
df = pd.DataFrame({
'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'],
'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww']
})
print(df)
给予:
Date Sym
0 2015-05-08 aapl
1 2015-05-07 aapl
2 2015-05-06 aapl
3 2015-05-05 aapl
4 2015-05-08 aaww
5 2015-05-07 aaww
6 2015-05-06 aaww
7 2015-05-05 aaww
现在我们是否按日期分组
df = df.groupby(['Date']).apply(lambda x: list(np.unique(x)))
l = []
for i in df:
i[1] = i[1]+i[2]
i.pop()
l.append(i)
df = pd.DataFrame(l)
print(df)
它给出输出:
0 1
0 2015-05-05 aaplaaww
1 2015-05-06 aaplaaww
2 2015-05-07 aaplaaww
3 2015-05-08 aaplaaww