将每日数据平均为每周数据

时间:2013-02-27 00:55:07

标签: r dayofweek

我想知道是否有办法将每日数据平均为每周数据。我称之为CADaily的数据框如下所示:

      > CADaily[1:10, ]
          Climate_Division       Date      Rain
      885                1 1948-07-01 0.8750000
      892                1 1948-07-02 2.9166667
      894                1 1948-07-03 0.7916667
      895                1 1948-07-04 0.4305556
      898                1 1948-07-05 0.8262061
      901                1 1948-07-06 0.5972222
      904                1 1948-07-17 0.04166667
      905                1 1948-07-18 0.08333333
      907                1 1948-07-20 0.04166667
      909                1 1948-07-22 0.12500000
      910                1 1948-07-21 NA

我的目标类似于根据日期(当然)和Climate_Division(范围从1到7)找到每日降雨量的平均值的总函数。我在网上搜索,我遇到了一个我能够使用的代码,但与我的目标并不相符:

      apply.weekly(xts(CADaily[,-2], order.by= CADaily[,2]), FUN = mean)

这就是我希望它做的事情,但是我的专栏Climate_Division也是平均值。我只想平均Rain,并根据Climate_Division然后Date来订购。有没有办法,我可以这样做:

      aggregate(CADaily, by =list(CADaily$Climate_Division, CADaily$Date), FUN = mean, na.rm = TRUE)

哪里的日期是某种形式的周?或者还有另一种方式吗?


编辑:

亲爱的,

感谢您的帮助。正如我原先想的那样,也许使用聚合并不是解决这个问题的最好方法。就产量而言,我希望获得数据中每年的平均降雨量(1948年至1995年)。换句话说,我希望得到一个很好的格式,我可以将其输入到具有星期结束日期形式的时间序列中。我正在寻找的输出(请记住可能存在NA值)是:

      Climate_Division     Date          Rain
      1                    1948-07-03    1.527778
      1                    1948-07-10    0.6179946
      1                    1948-07-17    0.04166667
      1                    1948-07-24    0.08333333
      ...
      1                    1995-12-23    0.24513245
      1                    1995-12-30    0.12450545

或者是否有更好的方式表达由日期表示的每周数据?

感谢您的帮助。

3 个答案:

答案 0 :(得分:3)

更新回答

根据OP对请求的更新,我修改了代码以在每周(星期六)的定义日期的日期聚合数据。这次我只使用基数R中可用的函数。它忽略了NA(如果给定的End_of_Week-Climate_Division只有NA,则得到NaN,而不是数字)。

# Data with another Climate division as example (same daily values and dates)
CADaily <-
structure(list(Climate_Division = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), Date = structure(c(1L, 2L, 
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L), .Label = c("01/07/1948", "02/07/1948", "03/07/1948", 
"04/07/1948", "05/07/1948", "06/07/1948", "17/07/1948", "18/07/1948", 
"20/07/1948", "22/07/1948"), class = "factor"), Rain = c(0.875, 
2.9166667, 0.7916667, 0.4305556, 0.8262061, 0.5972222, 0.04166667, 
0.08333333, 0.04166667, 0.125, 0.875, 2.9166667, 0.7916667, 0.4305556, 
0.8262061, 0.5972222, 0.04166667, 0.08333333, 0.04166667, 0.125
), week = c(27, 27, 27, 27, 27, 27, 29, 29, 29, 30, 27, 27, 27, 
27, 27, 27, 29, 29, 29, 30)), .Names = c("Climate_Division", 
"Date", "Rain", "week"), row.names = c(NA, 20L), class = "data.frame")

# Coerce to Date class
CADaily$Date <- as.Date(x=CADaily$Date, format='%d/%m/%Y')

# Extract day of the week (Saturday = 6)
CADaily$Week_Day <- as.numeric(format(CADaily$Date, format='%w'))

# Adjust end-of-week date (first saturday from the original Date)
CADaily$End_of_Week <- CADaily$Date + (6 - CADaily$Week_Day)

# Aggregate over week and climate division
aggregate(Rain~End_of_Week+Climate_Division, FUN=mean, data=CADaily, na.rm=TRUE)

# Output
#   End_of_Week Climate_Division       Rain
# 1  1948-07-03                1 1.52777780
# 2  1948-07-10                1 0.61799463
# 3  1948-07-17                1 0.04166667
# 4  1948-07-24                1 0.08333333
# 5  1948-07-03                2 1.52777780
# 6  1948-07-10                2 0.61799463
# 7  1948-07-17                2 0.04166667
# 8  1948-07-24                2 0.08333333

附加操作

此外,使用此代码可以获得其他聚合函数的结果,假设结果是每个星期对的原子向量相同。

# Aggregate over week and climate division, and show the total number of
# observations per week, the number of observations which represent missing
# values, the average, and the standard deviation.
aggregate(Rain~End_of_Week+Climate_Division, data=CADaily,
          FUN=function(x) c(n=length(x),
                            NAs=sum(is.na(x)),
                            Average=mean(x, na.rm=TRUE),
                            SD=sd(x, na.rm=TRUE)))

# Output. You get NA for the standard deviation if there is only one observation.
#   End_of_Week Climate_Division     Rain.n   Rain.NAs Rain.Average    Rain.SD
# 1  1948-07-03                1 3.00000000 0.00000000   1.52777780 1.20353454
# 2  1948-07-10                1 3.00000000 0.00000000   0.61799463 0.19864151
# 3  1948-07-17                1 1.00000000 0.00000000   0.04166667         NA
# 4  1948-07-24                1 3.00000000 0.00000000   0.08333333 0.04166667
# 5  1948-07-03                2 3.00000000 0.00000000   1.52777780 1.20353454
# 6  1948-07-10                2 3.00000000 0.00000000   0.61799463 0.19864151
# 7  1948-07-17                2 1.00000000 0.00000000   0.04166667         NA
# 8  1948-07-24                2 3.00000000 0.00000000   0.08333333 0.04166667



原始答案

尝试使用lubridate包。加载它,然后聚合(作为原始答案的一部分保留作为记录,这反映了OP按周汇总的请求)。

# Load lubridate package
library(package=lubridate)

# Set Weeks number. Date already of class `Date`
CADaily$Week <- week(CADaily$Date)

# Aggregate over week number and climate division
aggregate(Rain~Week+Climate_Division, FUN=mean, data=CADaily, na.rm=TRUE)

# Output
#   Week Climate_Division       Rain
# 1   27                1 1.07288622
# 2   29                1 0.05555556
# 3   30                1 0.12500000
# 4   27                2 1.07288622
# 5   29                2 0.05555556
# 6   30                2 0.12500000

答案 1 :(得分:1)

xts非常适合这种操纵。使用endpoints对数据进行子集,然后sapply每周对其进行处理。

CADaily <- read.table(text ='     Climate_Division       Date      Rain
      885                1 1948-07-01 0.8750000
      892                1 1948-07-02 2.9166667
      894                1 1948-07-03 0.7916667
      895                1 1948-07-04 0.4305556
      898                1 1948-07-05 0.8262061
      901                1 1948-07-06 0.5972222
      904                1 1948-07-17 0.04166667
      905                1 1948-07-18 0.08333333
      907                1 1948-07-20 0.04166667
      909                1 1948-07-22 0.12500000',head=T)
dat.xts <- xts(CADaily[,-2], order.by= as.POSIXct(CADaily[,2]))
INDEX <- endpoints(dat.xts, 'weeks')

lapply(1:(length(INDEX) - 1), function(y) {
    y <- dat.xts[(INDEX[y] + 1):INDEX[y + 1]]
    data.frame(y$Climate_Division,mean(y$Rain))

  })

我的结果是按周列出的列表:

[[1]]
           Climate_Division mean.y.Rain.
1948-07-01                1     1.168019
1948-07-02                1     1.168019
1948-07-03                1     1.168019
1948-07-04                1     1.168019
1948-07-05                1     1.168019

[[2]]
           Climate_Division mean.y.Rain.
1948-07-06                1    0.5972222

[[3]]
           Climate_Division mean.y.Rain.
1948-07-17                1       0.0625
1948-07-18                1       0.0625

[[4]]
           Climate_Division mean.y.Rain.
1948-07-20                1   0.08333334
1948-07-22                1   0.08333334

答案 2 :(得分:0)

我从之前的回答中回过头来。我认为这个更简单。

您只需找到每行的周末日期,然后汇总

CADaily <- read.table(text = "Climate_Division       Date      Rain\n1 1948-07-01 0.8750000\n1 1948-07-02 2.9166667\n1 1948-07-03 0.7916667\n1 1948-07-04 0.4305556\n1 1948-07-05 0.8262061\n1 1948-07-06 0.5972222\n1 1948-07-17 0.04166667\n1 1948-07-18 0.08333333\n1 1948-07-20 0.04166667\n1 1948-07-22 0.12500000\n2 1948-07-01 0.8750000\n2 1948-07-02 2.9166667\n2 1948-07-03 0.7916667\n2 1948-07-04 0.4305556\n2 1948-07-05 0.8262061\n2 1948-07-06 0.5972222\n2 1948-07-17 0.04166667\n2 1948-07-18 0.08333333\n2 1948-07-20 0.04166667\n2 1948-07-22 0.12500000", 
    head = T)

CADaily$weekend <- as.POSIXlt(CADaily$Date) + (7 - as.POSIXlt(CADaily$Date)$wday) * 24 * 60 * 60

aggregate(Rain ~ weekend + Climate_Division, data = CADaily, FUN = mean)
##      weekend Climate_Division       Rain
## 1 1948-07-04                1 1.52777780
## 2 1948-07-11                1 0.61799463
## 3 1948-07-18                1 0.04166667
## 4 1948-07-25                1 0.08333333
## 5 1948-07-04                2 1.52777780
## 6 1948-07-11                2 0.61799463
## 7 1948-07-18                2 0.04166667
## 8 1948-07-25                2 0.08333333